import gradio as gr from PIL import Image import numpy as np import os,sys import uuid import torch import cv2 import io import multiprocessing import random import time import imghdr from loguru import logger from share_btn import community_icon_html, loading_icon_html, download_icon_html, share_js from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config try: torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) except: pass from lama_cleaner.helper import ( load_img, numpy_to_bytes, resize_max_size, ) NUM_THREADS = str(multiprocessing.cpu_count()) # fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 os.environ["KMP_DUPLICATE_LIB_OK"] = "True" os.environ["OMP_NUM_THREADS"] = NUM_THREADS os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS os.environ["MKL_NUM_THREADS"] = NUM_THREADS os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS if os.environ.get("CACHE_DIR"): os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD') device = "cuda" if torch.cuda.is_available() else "cpu" print(f'device = {device}') def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def get_image_enhancer(scale = 2, device='cuda:0'): from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact from gfpgan import GFPGANer realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4 ) netscale = scale model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth' upsampler = RealESRGANer( scale=netscale, model_path=model_realesrgan, model=realesrgan_model, tile=0, tile_pad=10, pre_pad=0, half=False if device=='cpu' else True, device=device ) model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth' img_enhancer = GFPGANer( model_path=model_GFPGAN, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler, device=device ) return img_enhancer image_enhancer = None if sys.platform == 'linux' and 0==1: image_enhancer = get_image_enhancer(scale = 1, device=device) model = None def model_process(image, mask, img_enhancer): global model,image_enhancer if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]: # rotate image image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...] original_shape = image.shape interpolation = cv2.INTER_CUBIC size_limit = 1080 if size_limit == "Original": size_limit = max(image.shape) else: size_limit = int(size_limit) config = Config( ldm_steps=25, ldm_sampler='plms', zits_wireframe=True, hd_strategy='Original', hd_strategy_crop_margin=196, hd_strategy_crop_trigger_size=1280, hd_strategy_resize_limit=2048, prompt='', use_croper=False, croper_x=0, croper_y=0, croper_height=512, croper_width=512, sd_mask_blur=5, sd_strength=0.75, sd_steps=50, sd_guidance_scale=7.5, sd_sampler='ddim', sd_seed=42, cv2_flag='INPAINT_NS', cv2_radius=5, ) if config.sd_seed == -1: config.sd_seed = random.randint(1, 999999999) logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}") image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) logger.info(f"Resized image shape_1_: {image.shape}") logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}") mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}") if model is None: return None res_np_img = model(image, mask, config) torch.cuda.empty_cache() image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png'))) if image_enhancer is not None and img_enhancer: start = time.time() input_img_rgb = np.array(image) input_img_bgr = input_img_rgb[...,[2,1,0]] _, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False, only_center_face=False, paste_back=True) input_img_rgb = enhance_img[...,[2,1,0]] img_enhance = Image.fromarray(np.uint8(input_img_rgb)) image = img_enhance log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} " logger.info(log_info) return image # image model = ModelManager( name='lama', device=device, ) image_type = 'pil' # filepath' def predict(input, img_enhancer): if input is None: return None if image_type == 'filepath': # input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'} origin_image_bytes = open(input["image"], 'rb').read() print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes)) image, _ = load_img(origin_image_bytes) mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True) elif image_type == 'pil': # input: {'image': pil, 'mask': pil} image_pil = input['image'] mask_pil = input['mask'] image = np.array(image_pil) mask = np.array(mask_pil.convert("L")) output = model_process(image, mask, img_enhancer) return output, [image_pil, output], gr.update(visible=True) css = ''' .container {max-width: 1150px; margin: auto;padding-top: 1.5rem} #begin-btn {color: blue; font-size:20px;} #work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important} #op-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;} #erase-btn-container{margin: 0 auto; text-align: center;width:150px;border-width:3px;border-color:#2c9748} #erase-btn {padding:0;} #enhancer-checkbox{width:520px} #enhancer-tip{width:450px} #enhancer-tip-div{text-align: left} #image_output{margin: 0 auto; text-align: center;width:640px} #download-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;} #download-btn-container{margin: 0 auto; text-align: center;width: 100px;border-width:1px;border-color:#2c9748} #download-btn {padding:0;} #share-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' start_cleaner = """async() => { function isMobile() { try { document.createEvent("TouchEvent"); return true; } catch(e) { return false; } } var gradioEl = document.querySelector('body > gradio-app').shadowRoot; if (!gradioEl) { gradioEl = document.querySelector('body > gradio-app'); } const group1 = gradioEl.querySelectorAll('#group_1')[0]; const group2 = gradioEl.querySelectorAll('#group_2')[0]; const image_upload = gradioEl.querySelectorAll('#image_upload')[0]; const image_output = gradioEl.querySelectorAll('#image_output')[0]; const image_output_container = gradioEl.querySelectorAll('#image-output-container')[0]; const data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0]; const data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0]; image_output_container.setAttribute('style', 'width: 0px; height:0px; display:none;'); if (isMobile()) { const group1_width = group1.offsetWidth; image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;'); data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;'); data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;'); image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;'); const enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0]; enhancer.style.display = "none"; const share_btn_container = gradioEl.querySelectorAll('#share-btn-container')[0]; share_btn_container.setAttribute('style', 'width: 0px; height:0px;'); const share_btn_share_icon = gradioEl.querySelectorAll('#share-btn-share-icon')[0]; share_btn_share_icon.setAttribute('style', 'width: 0px; height:0px;'); } else { max_height = 800; image_upload.setAttribute('style', 'min-height: ' + max_height + 'px; overflow-x: overlay'); data_image.setAttribute('style', 'height: ' + max_height + 'px'); data_image_div.setAttribute('style', 'min-height: ' + max_height + 'px'); const share_btn_container = gradioEl.querySelectorAll('#share-btn-container')[0]; share_btn_container.setAttribute('style', 'width: 0px; height:0px;'); const share_btn_share_icon = gradioEl.querySelectorAll('#share-btn-share-icon')[0]; share_btn_share_icon.setAttribute('style', 'width: 0px; height:0px;'); } group1.style.display = "none"; group2.style.display = "block"; window['gradioEl'] = gradioEl; window['doCheckAction'] = 0; window['checkAction'] = function checkAction() { try { if (window['doCheckAction'] == 0) { var gallery_items = window['gradioEl'].querySelectorAll('#gallery .gallery-item'); if (gallery_items && gallery_items.length == 2) { window.clearInterval(window['checkAction_interval']); window['doCheckAction'] = 1; gallery_items[gallery_items.length-1].click(); } } } catch(e) { } } window['checkAction_interval'] = window.setInterval("window.checkAction()", 500); }""" download_img = """async() => { Date.prototype.Format = function (fmt) { var o = { "M+": this.getMonth() + 1, "d+": this.getDate(), "h+": this.getHours(), "m+": this.getMinutes(), "s+": this.getSeconds(), "q+": Math.floor((this.getMonth() + 3) / 3), "S": this.getMilliseconds() }; if (/(y+)/.test(fmt)) fmt = fmt.replace(RegExp.$1, (this.getFullYear() + "").substr(4 - RegExp.$1.length)); for (var k in o) if (new RegExp("(" + k + ")").test(fmt)) fmt = fmt.replace(RegExp.$1, (RegExp.$1.length == 1) ? (o[k]) : (("00" + o[k]).substr(("" + o[k]).length))); return fmt; } var gradioEl = document.querySelector('body > gradio-app').shadowRoot; if (!gradioEl) { gradioEl = document.querySelector('body > gradio-app'); } const out_image = gradioEl.querySelectorAll('#image_output img')[0]; if (out_image) { var x=new XMLHttpRequest(); x.open("GET", out_image.src, true); x.responseType = 'blob'; x.onload = function(e){ var url = window.URL.createObjectURL(x.response) var a = document.createElement('a'); a.href = url; a.download = (new Date()).Format("yyyyMMdd_hhmmss"); a.click(); } x.send(); } }""" image_blocks = gr.Blocks(css=css, title='Image Cleaner') with image_blocks as demo: with gr.Group(elem_id="group_1", visible=True) as group_1: with gr.Box(): with gr.Row(elem_id="gallery_row"): with gr.Column(elem_id="gallery_col"): gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False) gallery.style(grid=[2], height='500px') with gr.Row(): with gr.Column(): begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True) with gr.Row(): with gr.Column(): gr.HTML("""
Solemnly promise: this application will not collect any user information and image resources.