Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Calculate quality metrics for previous training run or pretrained network pickle.""" | |
import os | |
import click | |
import json | |
import tempfile | |
import copy | |
import torch | |
import dnnlib | |
import legacy | |
from metrics import metric_main | |
from metrics import metric_utils | |
from torch_utils import training_stats | |
from torch_utils import custom_ops | |
from torch_utils import misc | |
#---------------------------------------------------------------------------- | |
def subprocess_fn(rank, args, temp_dir): | |
dnnlib.util.Logger(should_flush=True) | |
# Init torch.distributed. | |
if args.num_gpus > 1: | |
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) | |
if os.name == 'nt': | |
init_method = 'file:///' + init_file.replace('\\', '/') | |
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) | |
else: | |
init_method = f'file://{init_file}' | |
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) | |
# Init torch_utils. | |
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None | |
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) | |
if rank != 0 or not args.verbose: | |
custom_ops.verbosity = 'none' | |
# Print network summary. | |
device = torch.device('cuda', rank) | |
torch.backends.cudnn.benchmark = True | |
G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device) | |
if rank == 0 and args.verbose: | |
z = torch.empty([1, G.z_dim], device=device) | |
c = torch.empty([1, G.c_dim], device=device) | |
misc.print_module_summary(G, [z, c]) | |
# Calculate each metric. | |
for metric in args.metrics: | |
if rank == 0 and args.verbose: | |
print(f'Calculating {metric}...') | |
progress = metric_utils.ProgressMonitor(verbose=args.verbose) | |
result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs, | |
num_gpus=args.num_gpus, rank=rank, device=device, progress=progress) | |
if rank == 0: | |
metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl) | |
if rank == 0 and args.verbose: | |
print() | |
# Done. | |
if rank == 0 and args.verbose: | |
print('Exiting...') | |
#---------------------------------------------------------------------------- | |
class CommaSeparatedList(click.ParamType): | |
name = 'list' | |
def convert(self, value, param, ctx): | |
_ = param, ctx | |
if value is None or value.lower() == 'none' or value == '': | |
return [] | |
return value.split(',') | |
#---------------------------------------------------------------------------- | |
def calc_metrics(ctx, network_pkl, metrics, data, mirror, gpus, verbose): | |
"""Calculate quality metrics for previous training run or pretrained network pickle. | |
Examples: | |
\b | |
# Previous training run: look up options automatically, save result to JSONL file. | |
python calc_metrics.py --metrics=pr50k3_full \\ | |
--network=~/training-runs/00000-ffhq10k-res64-auto1/network-snapshot-000000.pkl | |
\b | |
# Pre-trained network pickle: specify dataset explicitly, print result to stdout. | |
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq.zip --mirror=1 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl | |
Available metrics: | |
\b | |
ADA paper: | |
fid50k_full Frechet inception distance against the full dataset. | |
kid50k_full Kernel inception distance against the full dataset. | |
pr50k3_full Precision and recall againt the full dataset. | |
is50k Inception score for CIFAR-10. | |
\b | |
StyleGAN and StyleGAN2 papers: | |
fid50k Frechet inception distance against 50k real images. | |
kid50k Kernel inception distance against 50k real images. | |
pr50k3 Precision and recall against 50k real images. | |
ppl2_wend Perceptual path length in W at path endpoints against full image. | |
ppl_zfull Perceptual path length in Z for full paths against cropped image. | |
ppl_wfull Perceptual path length in W for full paths against cropped image. | |
ppl_zend Perceptual path length in Z at path endpoints against cropped image. | |
ppl_wend Perceptual path length in W at path endpoints against cropped image. | |
""" | |
dnnlib.util.Logger(should_flush=True) | |
# Validate arguments. | |
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose) | |
if not all(metric_main.is_valid_metric(metric) for metric in args.metrics): | |
ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) | |
if not args.num_gpus >= 1: | |
ctx.fail('--gpus must be at least 1') | |
# Load network. | |
if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl): | |
ctx.fail('--network must point to a file or URL') | |
if args.verbose: | |
print(f'Loading network from "{network_pkl}"...') | |
with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f: | |
network_dict = legacy.load_network_pkl(f) | |
args.G = network_dict['G_ema'] # subclass of torch.nn.Module | |
# Initialize dataset options. | |
if data is not None: | |
args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data) | |
elif network_dict['training_set_kwargs'] is not None: | |
args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs']) | |
else: | |
ctx.fail('Could not look up dataset options; please specify --data') | |
# Finalize dataset options. | |
args.dataset_kwargs.resolution = args.G.img_resolution | |
args.dataset_kwargs.use_labels = (args.G.c_dim != 0) | |
if mirror is not None: | |
args.dataset_kwargs.xflip = mirror | |
# Print dataset options. | |
if args.verbose: | |
print('Dataset options:') | |
print(json.dumps(args.dataset_kwargs, indent=2)) | |
# Locate run dir. | |
args.run_dir = None | |
if os.path.isfile(network_pkl): | |
pkl_dir = os.path.dirname(network_pkl) | |
if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')): | |
args.run_dir = pkl_dir | |
# Launch processes. | |
if args.verbose: | |
print('Launching processes...') | |
torch.multiprocessing.set_start_method('spawn') | |
with tempfile.TemporaryDirectory() as temp_dir: | |
if args.num_gpus == 1: | |
subprocess_fn(rank=0, args=args, temp_dir=temp_dir) | |
else: | |
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
calc_metrics() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |