import io import logging import time from pathlib import Path from spkmix import spk_mix_map import librosa import matplotlib.pyplot as plt import numpy as np import soundfile from inference import infer_tool from inference import slicer from inference.infer_tool import Svc logging.getLogger('numba').setLevel(logging.WARNING) chunks_dict = infer_tool.read_temp("inference/chunks_temp.json") def main(): import argparse parser = argparse.ArgumentParser(description='sovits4 inference') # 一定要设置的部分 parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_37600.pth", help='模型路径') parser.add_argument('-c', '--config_path', type=str, default="logs/44k/config.json", help='配置文件路径') parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s') parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下') parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)') parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['buyizi'], help='合成目标说话人名称') # 可选项部分 parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False, help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调') parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型或特征检索索引路径,如果没有训练聚类或特征检索则随便填') parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案或特征检索占比,范围0-1,若没有训练聚类模型或特征检索则默认0即可') parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒') parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm", help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)') parser.add_argument('-eh', '--enhance', action='store_true', default=False, help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭') parser.add_argument('-shd', '--shallow_diffusion', action='store_true', default=False, help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止') parser.add_argument('-usm', '--use_spk_mix', action='store_true', default=False, help='是否使用角色融合') parser.add_argument('-lea', '--loudness_envelope_adjustment', type=float, default=1, help='输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络') parser.add_argument('-fr', '--feature_retrieval', action='store_true', default=False, help='是否使用特征检索,如果使用聚类模型将被禁用,且cm与cr参数将会变成特征检索的索引路径与混合比例') # 浅扩散设置 parser.add_argument('-dm', '--diffusion_model_path', type=str, default="logs/44k/diffusion/model_0.pt", help='扩散模型路径') parser.add_argument('-dc', '--diffusion_config_path', type=str, default="logs/44k/diffusion/config.yaml", help='扩散模型配置文件路径') parser.add_argument('-ks', '--k_step', type=int, default=100, help='扩散步数,越大越接近扩散模型的结果,默认100') parser.add_argument('-se', '--second_encoding', action='store_true', default=False, help='二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,有时候效果好,有时候效果差') parser.add_argument('-od', '--only_diffusion', action='store_true', default=False, help='纯扩散模式,该模式不会加载sovits模型,以扩散模型推理') # 不用动的部分 parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50') parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu') parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学') parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现') parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式') parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭') parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0') parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音') args = parser.parse_args() clean_names = args.clean_names trans = args.trans spk_list = args.spk_list slice_db = args.slice_db wav_format = args.wav_format auto_predict_f0 = args.auto_predict_f0 cluster_infer_ratio = args.cluster_infer_ratio noice_scale = args.noice_scale pad_seconds = args.pad_seconds clip = args.clip lg = args.linear_gradient lgr = args.linear_gradient_retain f0p = args.f0_predictor enhance = args.enhance enhancer_adaptive_key = args.enhancer_adaptive_key cr_threshold = args.f0_filter_threshold diffusion_model_path = args.diffusion_model_path diffusion_config_path = args.diffusion_config_path k_step = args.k_step only_diffusion = args.only_diffusion shallow_diffusion = args.shallow_diffusion use_spk_mix = args.use_spk_mix second_encoding = args.second_encoding loudness_envelope_adjustment = args.loudness_envelope_adjustment svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path, enhance, diffusion_model_path, diffusion_config_path, shallow_diffusion, only_diffusion, use_spk_mix, args.feature_retrieval) infer_tool.mkdir(["raw", "results"]) if len(spk_mix_map)<=1: use_spk_mix = False if use_spk_mix: spk_list = [spk_mix_map] infer_tool.fill_a_to_b(trans, clean_names) for clean_name, tran in zip(clean_names, trans): raw_audio_path = f"raw/{clean_name}" if "." not in raw_audio_path: raw_audio_path += ".wav" infer_tool.format_wav(raw_audio_path) for spk in spk_list: kwarg = { "raw_audio_path" : raw_audio_path, "spk" : spk, "tran" : tran, "slice_db" : slice_db, "cluster_infer_ratio" : cluster_infer_ratio, "auto_predict_f0" : auto_predict_f0, "noice_scale" : noice_scale, "pad_seconds" : pad_seconds, "clip_seconds" : clip, "lg_num": lg, "lgr_num" : lgr, "f0_predictor" : f0p, "enhancer_adaptive_key" : enhancer_adaptive_key, "cr_threshold" : cr_threshold, "k_step":k_step, "use_spk_mix":use_spk_mix, "second_encoding":second_encoding, "loudness_envelope_adjustment":loudness_envelope_adjustment } audio = svc_model.slice_inference(**kwarg) key = "auto" if auto_predict_f0 else f"{tran}key" cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}" isdiffusion = "sovits" if shallow_diffusion : isdiffusion = "sovdiff" if only_diffusion : isdiffusion = "diff" if use_spk_mix: spk = "spk_mix" res_path = f'results/{clean_name}_{key}_{spk}{cluster_name}_{isdiffusion}.{wav_format}' soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) svc_model.clear_empty() if __name__ == '__main__': main()