Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,413 @@ from transformers import MusicgenMelodyForConditionalGeneration, AutoProcessor,
|
|
9 |
from transformers.generation.streamers import BaseStreamer
|
10 |
|
11 |
import gradio as gr
|
12 |
-
import
|
13 |
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
title = "MusicGen Streaming"
|
19 |
|
@@ -52,11 +454,12 @@ For details on how the streaming class works, check out the source code for the
|
|
52 |
class MusicgenStreamer(BaseStreamer):
|
53 |
def __init__(
|
54 |
self,
|
55 |
-
model:
|
56 |
device: Optional[str] = None,
|
57 |
play_steps: Optional[int] = 10,
|
58 |
stride: Optional[int] = None,
|
59 |
timeout: Optional[float] = None,
|
|
|
60 |
):
|
61 |
"""
|
62 |
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
@@ -79,6 +482,8 @@ class MusicgenStreamer(BaseStreamer):
|
|
79 |
timeout (`int`, *optional*):
|
80 |
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
81 |
in `.generate()`, when it is called in a separate thread.
|
|
|
|
|
82 |
"""
|
83 |
self.decoder = model.decoder
|
84 |
self.audio_encoder = model.audio_encoder
|
@@ -94,7 +499,12 @@ class MusicgenStreamer(BaseStreamer):
|
|
94 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
95 |
self.token_cache = None
|
96 |
self.to_yield = 0
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
# varibles used in the thread process
|
99 |
self.audio_queue = Queue()
|
100 |
self.stop_signal = None
|
@@ -140,17 +550,24 @@ class MusicgenStreamer(BaseStreamer):
|
|
140 |
|
141 |
if self.token_cache.shape[-1] % self.play_steps == 0:
|
142 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
|
|
|
|
|
|
|
|
143 |
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
144 |
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
145 |
|
146 |
-
def end(self):
|
147 |
"""Flushes any remaining cache and appends the stop symbol."""
|
148 |
if self.token_cache is not None:
|
149 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
150 |
else:
|
151 |
audio_values = np.zeros(self.to_yield)
|
152 |
|
153 |
-
|
|
|
|
|
|
|
154 |
|
155 |
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
156 |
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
@@ -175,11 +592,29 @@ frame_rate = model.audio_encoder.config.frame_rate
|
|
175 |
target_dtype = np.int16
|
176 |
max_range = np.iinfo(target_dtype).max
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
max_new_tokens = int(frame_rate * audio_length_in_s)
|
182 |
play_steps = int(frame_rate * play_steps_in_s)
|
|
|
|
|
|
|
|
|
183 |
|
184 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
185 |
if device != model.device:
|
@@ -187,52 +622,70 @@ def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, see
|
|
187 |
if device == "cuda:0":
|
188 |
model.half()
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
|
197 |
|
198 |
generation_kwargs = dict(
|
199 |
**inputs.to(device),
|
|
|
200 |
streamer=streamer,
|
201 |
max_new_tokens=max_new_tokens,
|
202 |
)
|
203 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
204 |
thread.start()
|
|
|
|
|
205 |
|
206 |
set_seed(seed)
|
207 |
for new_audio in streamer:
|
208 |
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
|
|
209 |
new_audio = (new_audio * max_range).astype(np.int16)
|
210 |
-
|
|
|
|
|
211 |
|
212 |
|
213 |
demo = gr.Interface(
|
214 |
fn=generate_audio,
|
215 |
inputs=[
|
216 |
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
|
|
|
217 |
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
|
218 |
gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
|
219 |
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
|
220 |
],
|
221 |
outputs=[
|
222 |
-
gr.Audio(label="Generated Music",
|
223 |
],
|
224 |
examples=[
|
225 |
-
["An 80s driving pop song with heavy drums and synth pads in the background", 30, 1.5, 5],
|
226 |
-
["A cheerful country song with acoustic guitars", 30, 1.5, 5],
|
227 |
-
["90s rock song with electric guitar and heavy drums", 30, 1.5, 5],
|
228 |
-
["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", 30, 1.5, 5],
|
229 |
-
["lofi slow bpm electro chill with organic samples", 30, 1.5, 5],
|
230 |
],
|
231 |
title=title,
|
232 |
description=description,
|
|
|
233 |
article=article,
|
234 |
cache_examples=False,
|
235 |
)
|
236 |
|
237 |
|
238 |
-
demo.queue().launch()
|
|
|
9 |
from transformers.generation.streamers import BaseStreamer
|
10 |
|
11 |
import gradio as gr
|
12 |
+
import io, wave
|
13 |
|
14 |
+
# import spaces
|
15 |
|
16 |
+
|
17 |
+
from transformers import MusicgenMelodyForConditionalGeneration, MusicgenForConditionalGeneration, AutoProcessor, set_seed
|
18 |
+
from transformers.modeling_outputs import BaseModelOutput
|
19 |
+
from transformers.utils import logging
|
20 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
21 |
+
from transformers.generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList
|
22 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
23 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import copy
|
26 |
+
import torch
|
27 |
+
import inspect
|
28 |
+
|
29 |
+
from demucs import pretrained
|
30 |
+
from demucs.apply import apply_model
|
31 |
+
from demucs.audio import convert_audio
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class MusicgenMelodyForLongFormConditionalGeneration(MusicgenMelodyForConditionalGeneration):
|
37 |
+
stride_longform = 500
|
38 |
+
max_longform_generation_length = 4000
|
39 |
+
|
40 |
+
|
41 |
+
def _prepare_audio_encoder_kwargs_for_longform_generation(
|
42 |
+
self, audio_codes, model_kwargs,):
|
43 |
+
frames, bsz, codebooks, seq_len = audio_codes.shape
|
44 |
+
|
45 |
+
if frames != 1:
|
46 |
+
raise ValueError(
|
47 |
+
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
|
48 |
+
"disabled by setting `chunk_length=None` in the audio encoder."
|
49 |
+
)
|
50 |
+
|
51 |
+
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
|
52 |
+
|
53 |
+
model_kwargs["decoder_input_ids"] = decoder_input_ids
|
54 |
+
return model_kwargs
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def generate(
|
58 |
+
self,
|
59 |
+
inputs: Optional[torch.Tensor] = None,
|
60 |
+
generation_config: Optional[GenerationConfig] = None,
|
61 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
62 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
63 |
+
synced_gpus: Optional[bool] = None,
|
64 |
+
streamer: Optional["BaseStreamer"] = None,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
|
69 |
+
Generates sequences of token ids for models with a language modeling head.
|
70 |
+
|
71 |
+
<Tip warning={true}>
|
72 |
+
|
73 |
+
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
|
74 |
+
model's default generation configuration. You can override any `generation_config` by passing the corresponding
|
75 |
+
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
|
76 |
+
|
77 |
+
For an overview of generation strategies and code examples, check out the [following
|
78 |
+
guide](./generation_strategies).
|
79 |
+
|
80 |
+
</Tip>
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
|
84 |
+
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
|
85 |
+
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
|
86 |
+
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
|
87 |
+
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
|
88 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
89 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
90 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
91 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
92 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
93 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
94 |
+
default values, whose documentation should be checked to parameterize generation.
|
95 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
96 |
+
Custom logits processors that complement the default logits processors built from arguments and
|
97 |
+
generation config. If a logit processor is passed that is already created with the arguments or a
|
98 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
99 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
100 |
+
Custom stopping criteria that complement the default stopping criteria built from arguments and a
|
101 |
+
generation config. If a stopping criteria is passed that is already created with the arguments or a
|
102 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
103 |
+
synced_gpus (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
105 |
+
streamer (`BaseStreamer`, *optional*):
|
106 |
+
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
|
107 |
+
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
|
108 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
109 |
+
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
110 |
+
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
|
111 |
+
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
|
112 |
+
|
113 |
+
Return:
|
114 |
+
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
|
115 |
+
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
|
116 |
+
|
117 |
+
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
|
118 |
+
[`~utils.ModelOutput`] types are:
|
119 |
+
|
120 |
+
- [`~generation.GenerateDecoderOnlyOutput`],
|
121 |
+
- [`~generation.GenerateBeamDecoderOnlyOutput`]
|
122 |
+
|
123 |
+
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
|
124 |
+
[`~utils.ModelOutput`] types are:
|
125 |
+
|
126 |
+
- [`~generation.GenerateEncoderDecoderOutput`],
|
127 |
+
- [`~generation.GenerateBeamEncoderDecoderOutput`]
|
128 |
+
"""
|
129 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
|
130 |
+
if generation_config is None:
|
131 |
+
generation_config = self.generation_config
|
132 |
+
|
133 |
+
generation_config = copy.deepcopy(generation_config)
|
134 |
+
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
135 |
+
generation_config.validate()
|
136 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
137 |
+
|
138 |
+
# 2. Set generation parameters if not already defined
|
139 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
140 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
141 |
+
|
142 |
+
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
143 |
+
if model_kwargs.get("attention_mask", None) is None:
|
144 |
+
logger.warning(
|
145 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
146 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
147 |
+
)
|
148 |
+
eos_token_id = generation_config.eos_token_id
|
149 |
+
if isinstance(eos_token_id, list):
|
150 |
+
eos_token_id = eos_token_id[0]
|
151 |
+
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
|
152 |
+
generation_config.pad_token_id = eos_token_id
|
153 |
+
|
154 |
+
# 3. Define model inputs
|
155 |
+
# inputs_tensor has to be defined
|
156 |
+
# model_input_name is defined if model-specific keyword input is passed
|
157 |
+
# otherwise model_input_name is None
|
158 |
+
# all model-specific keyword inputs are removed from `model_kwargs`
|
159 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
160 |
+
inputs, generation_config.bos_token_id, model_kwargs
|
161 |
+
)
|
162 |
+
batch_size = inputs_tensor.shape[0]
|
163 |
+
|
164 |
+
# 4. Define other model kwargs
|
165 |
+
model_kwargs["output_attentions"] = generation_config.output_attentions
|
166 |
+
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
167 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
168 |
+
model_kwargs["guidance_scale"] = generation_config.guidance_scale
|
169 |
+
|
170 |
+
if model_kwargs.get("attention_mask", None) is None:
|
171 |
+
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
|
172 |
+
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
|
173 |
+
)
|
174 |
+
|
175 |
+
if "encoder_hidden_states" not in model_kwargs:
|
176 |
+
# encoder_hidden_states are created and added to `model_kwargs`
|
177 |
+
model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
|
178 |
+
inputs_tensor,
|
179 |
+
model_kwargs,
|
180 |
+
model_input_name,
|
181 |
+
guidance_scale=generation_config.guidance_scale,
|
182 |
+
)
|
183 |
+
|
184 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
185 |
+
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
186 |
+
batch_size=batch_size,
|
187 |
+
model_input_name=model_input_name,
|
188 |
+
model_kwargs=model_kwargs,
|
189 |
+
decoder_start_token_id=generation_config.decoder_start_token_id,
|
190 |
+
bos_token_id=generation_config.bos_token_id,
|
191 |
+
device=inputs_tensor.device,
|
192 |
+
)
|
193 |
+
|
194 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
195 |
+
input_ids_seq_length = input_ids.shape[-1]
|
196 |
+
|
197 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
198 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
199 |
+
logger.warning(
|
200 |
+
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
|
201 |
+
"to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation."
|
202 |
+
)
|
203 |
+
elif generation_config.max_new_tokens is not None:
|
204 |
+
if not has_default_max_length:
|
205 |
+
logger.warning(
|
206 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
207 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
208 |
+
"Please refer to the documentation for more information. "
|
209 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
210 |
+
)
|
211 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
212 |
+
|
213 |
+
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
|
214 |
+
raise ValueError(
|
215 |
+
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
216 |
+
f" the maximum length ({generation_config.max_length})"
|
217 |
+
)
|
218 |
+
if input_ids_seq_length >= generation_config.max_length:
|
219 |
+
logger.warning(
|
220 |
+
f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to"
|
221 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
222 |
+
" increasing `max_new_tokens`."
|
223 |
+
)
|
224 |
+
|
225 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody)
|
226 |
+
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
227 |
+
input_ids,
|
228 |
+
pad_token_id=generation_config.decoder_start_token_id,
|
229 |
+
max_length=generation_config.max_length,
|
230 |
+
)
|
231 |
+
# stash the delay mask so that we don't have to recompute in each forward pass
|
232 |
+
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
|
233 |
+
|
234 |
+
# input_ids are ready to be placed on the streamer (if used)
|
235 |
+
if streamer is not None:
|
236 |
+
streamer.put(input_ids.cpu())
|
237 |
+
|
238 |
+
# 7. determine generation mode
|
239 |
+
is_greedy_gen_mode = (
|
240 |
+
(generation_config.num_beams == 1)
|
241 |
+
and (generation_config.num_beam_groups == 1)
|
242 |
+
and generation_config.do_sample is False
|
243 |
+
)
|
244 |
+
is_sample_gen_mode = (
|
245 |
+
(generation_config.num_beams == 1)
|
246 |
+
and (generation_config.num_beam_groups == 1)
|
247 |
+
and generation_config.do_sample is True
|
248 |
+
)
|
249 |
+
|
250 |
+
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
|
251 |
+
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
|
252 |
+
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
|
253 |
+
generation_config.guidance_scale = None
|
254 |
+
|
255 |
+
# 9. prepare distribution pre_processing samplers
|
256 |
+
logits_processor = self._get_logits_processor(
|
257 |
+
generation_config=generation_config,
|
258 |
+
input_ids_seq_length=input_ids_seq_length,
|
259 |
+
encoder_input_ids=inputs_tensor,
|
260 |
+
prefix_allowed_tokens_fn=None,
|
261 |
+
logits_processor=logits_processor,
|
262 |
+
)
|
263 |
+
|
264 |
+
# 10. prepare stopping criteria
|
265 |
+
stopping_criteria = self._get_stopping_criteria(
|
266 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
267 |
+
)
|
268 |
+
|
269 |
+
# ENTER LONGFORM GENERATION LOOP
|
270 |
+
generated_tokens = []
|
271 |
+
|
272 |
+
# the first timestamps corresponds to decoder_start_token
|
273 |
+
current_generated_length = input_ids.shape[1] - 1
|
274 |
+
|
275 |
+
while current_generated_length <= self.max_longform_generation_length:
|
276 |
+
if is_greedy_gen_mode:
|
277 |
+
if generation_config.num_return_sequences > 1:
|
278 |
+
raise ValueError(
|
279 |
+
"num_return_sequences has to be 1 when doing greedy search, "
|
280 |
+
f"but is {generation_config.num_return_sequences}."
|
281 |
+
)
|
282 |
+
|
283 |
+
# 11. run greedy search
|
284 |
+
outputs = self._greedy_search(
|
285 |
+
input_ids,
|
286 |
+
logits_processor=logits_processor,
|
287 |
+
stopping_criteria=stopping_criteria,
|
288 |
+
pad_token_id=generation_config.pad_token_id,
|
289 |
+
eos_token_id=generation_config.eos_token_id,
|
290 |
+
output_scores=generation_config.output_scores,
|
291 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
292 |
+
synced_gpus=synced_gpus,
|
293 |
+
streamer=streamer,
|
294 |
+
**model_kwargs,
|
295 |
+
)
|
296 |
+
|
297 |
+
elif is_sample_gen_mode:
|
298 |
+
# 11. prepare logits warper
|
299 |
+
logits_warper = self._get_logits_warper(generation_config)
|
300 |
+
|
301 |
+
# expand input_ids with `num_return_sequences` additional sequences per batch
|
302 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
303 |
+
input_ids=input_ids,
|
304 |
+
expand_size=generation_config.num_return_sequences,
|
305 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
306 |
+
**model_kwargs,
|
307 |
+
)
|
308 |
+
|
309 |
+
# 12. run sample
|
310 |
+
outputs = self._sample(
|
311 |
+
input_ids,
|
312 |
+
logits_processor=logits_processor,
|
313 |
+
logits_warper=logits_warper,
|
314 |
+
stopping_criteria=stopping_criteria,
|
315 |
+
pad_token_id=generation_config.pad_token_id,
|
316 |
+
eos_token_id=generation_config.eos_token_id,
|
317 |
+
output_scores=generation_config.output_scores,
|
318 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
319 |
+
synced_gpus=synced_gpus,
|
320 |
+
streamer=streamer,
|
321 |
+
**model_kwargs,
|
322 |
+
)
|
323 |
+
|
324 |
+
else:
|
325 |
+
raise ValueError(
|
326 |
+
"Got incompatible mode for generation, should be one of greedy or sampling. "
|
327 |
+
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
|
328 |
+
)
|
329 |
+
|
330 |
+
if generation_config.return_dict_in_generate:
|
331 |
+
output_ids = outputs.sequences
|
332 |
+
else:
|
333 |
+
output_ids = outputs
|
334 |
+
|
335 |
+
# apply the pattern mask to the final ids
|
336 |
+
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
|
337 |
+
|
338 |
+
# revert the pattern delay mask by filtering the pad token id
|
339 |
+
output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape(
|
340 |
+
batch_size, self.decoder.num_codebooks, -1
|
341 |
+
)
|
342 |
+
if len(generated_tokens) >= 1:
|
343 |
+
generated_tokens.append(output_ids[:, :, self.stride_longform:])
|
344 |
+
else:
|
345 |
+
generated_tokens.append(output_ids)
|
346 |
+
|
347 |
+
current_generated_length += generated_tokens[-1].shape[-1]
|
348 |
+
|
349 |
+
# append the frame dimension back to the audio codes
|
350 |
+
# use last generated tokens as begining of the newest generation
|
351 |
+
output_ids = output_ids[None, :, :, (output_ids.shape[-1] - self.stride_longform):]
|
352 |
+
|
353 |
+
model_kwargs = self._prepare_audio_encoder_kwargs_for_longform_generation(output_ids, model_kwargs)
|
354 |
+
|
355 |
+
# Prepare new `input_ids` which will be used for auto-regressive generation
|
356 |
+
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
357 |
+
batch_size=batch_size,
|
358 |
+
model_input_name="input_ids",
|
359 |
+
model_kwargs=model_kwargs,
|
360 |
+
decoder_start_token_id=self.generation_config.decoder_start_token_id,
|
361 |
+
bos_token_id=self.generation_config.bos_token_id,
|
362 |
+
device=input_ids.device,
|
363 |
+
)
|
364 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody)
|
365 |
+
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
366 |
+
input_ids,
|
367 |
+
pad_token_id=generation_config.decoder_start_token_id,
|
368 |
+
max_length=generation_config.max_length,
|
369 |
+
)
|
370 |
+
# stash the delay mask so that we don't have to recompute in each forward pass
|
371 |
+
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
|
372 |
+
|
373 |
+
|
374 |
+
# TODO(YL): periodic prompt song
|
375 |
+
|
376 |
+
# encoder_hidden_states are created and added to `model_kwargs`
|
377 |
+
# model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
|
378 |
+
# inputs_tensor,
|
379 |
+
# model_kwargs,
|
380 |
+
# model_input_name,
|
381 |
+
# guidance_scale=generation_config.guidance_scale,
|
382 |
+
# )
|
383 |
+
|
384 |
+
# append the frame dimension back to the audio codes
|
385 |
+
output_ids = torch.cat(generated_tokens, dim=-1)[None, ...]
|
386 |
+
|
387 |
+
# Specific to this gradio demo
|
388 |
+
if streamer is not None:
|
389 |
+
streamer.end(True)
|
390 |
+
|
391 |
+
audio_scales = model_kwargs.get("audio_scales")
|
392 |
+
if audio_scales is None:
|
393 |
+
audio_scales = [None] * batch_size
|
394 |
+
|
395 |
+
if self.decoder.config.audio_channels == 1:
|
396 |
+
output_values = self.audio_encoder.decode(
|
397 |
+
output_ids,
|
398 |
+
audio_scales=audio_scales,
|
399 |
+
).audio_values
|
400 |
+
else:
|
401 |
+
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
|
402 |
+
output_values_left = codec_outputs_left.audio_values
|
403 |
+
|
404 |
+
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
|
405 |
+
output_values_right = codec_outputs_right.audio_values
|
406 |
+
|
407 |
+
output_values = torch.cat([output_values_left, output_values_right], dim=1)
|
408 |
+
|
409 |
+
if generation_config.return_dict_in_generate:
|
410 |
+
outputs.sequences = output_values
|
411 |
+
return outputs
|
412 |
+
else:
|
413 |
+
return output_values
|
414 |
+
|
415 |
+
model = MusicgenMelodyForLongFormConditionalGeneration.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14")#, attn_implementation="sdpa")
|
416 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14")
|
417 |
+
|
418 |
+
demucs = pretrained.get_model('htdemucs')
|
419 |
|
420 |
title = "MusicGen Streaming"
|
421 |
|
|
|
454 |
class MusicgenStreamer(BaseStreamer):
|
455 |
def __init__(
|
456 |
self,
|
457 |
+
model: MusicgenMelodyForConditionalGeneration,
|
458 |
device: Optional[str] = None,
|
459 |
play_steps: Optional[int] = 10,
|
460 |
stride: Optional[int] = None,
|
461 |
timeout: Optional[float] = None,
|
462 |
+
is_longform: Optional[bool] = False,
|
463 |
):
|
464 |
"""
|
465 |
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
|
|
482 |
timeout (`int`, *optional*):
|
483 |
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
484 |
in `.generate()`, when it is called in a separate thread.
|
485 |
+
is_longform (`bool`, *optional*, defaults to `False`):
|
486 |
+
If `is_longform`, will takes into account long form stride and non regular ending signal.
|
487 |
"""
|
488 |
self.decoder = model.decoder
|
489 |
self.audio_encoder = model.audio_encoder
|
|
|
499 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
500 |
self.token_cache = None
|
501 |
self.to_yield = 0
|
502 |
+
|
503 |
+
self.is_longform = is_longform
|
504 |
+
if is_longform:
|
505 |
+
self.longform_stride = model.stride_longform
|
506 |
+
self.longform_stride_applied = True
|
507 |
+
|
508 |
# varibles used in the thread process
|
509 |
self.audio_queue = Queue()
|
510 |
self.stop_signal = None
|
|
|
550 |
|
551 |
if self.token_cache.shape[-1] % self.play_steps == 0:
|
552 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
553 |
+
if self.is_longform:
|
554 |
+
if not self.longform_stride_applied:
|
555 |
+
self.to_yield = self.to_yield + self.longform_stride
|
556 |
+
self.longform_stride_applied = True
|
557 |
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
558 |
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
559 |
|
560 |
+
def end(self, stream_end=False):
|
561 |
"""Flushes any remaining cache and appends the stop symbol."""
|
562 |
if self.token_cache is not None:
|
563 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
564 |
else:
|
565 |
audio_values = np.zeros(self.to_yield)
|
566 |
|
567 |
+
stream_end = (not self.is_longform) or stream_end
|
568 |
+
if self.is_longform:
|
569 |
+
self.longform_stride_applied = False
|
570 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=stream_end)
|
571 |
|
572 |
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
573 |
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
|
|
592 |
target_dtype = np.int16
|
593 |
max_range = np.iinfo(target_dtype).max
|
594 |
|
595 |
+
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
|
596 |
+
# This will create a wave header then append the frame input
|
597 |
+
# It should be first on a streaming wav file
|
598 |
+
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
599 |
+
wav_buf = io.BytesIO()
|
600 |
+
with wave.open(wav_buf, "wb") as vfout:
|
601 |
+
vfout.setnchannels(channels)
|
602 |
+
vfout.setsampwidth(sample_width)
|
603 |
+
vfout.setframerate(sample_rate)
|
604 |
+
vfout.writeframes(frame_input)
|
605 |
+
|
606 |
+
wav_buf.seek(0)
|
607 |
+
|
608 |
+
return wav_buf.read()
|
609 |
+
|
610 |
+
# @spaces.GPU()
|
611 |
+
def generate_audio(text_prompt, audio, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
|
612 |
max_new_tokens = int(frame_rate * audio_length_in_s)
|
613 |
play_steps = int(frame_rate * play_steps_in_s)
|
614 |
+
|
615 |
+
if audio is not None:
|
616 |
+
audio = convert_audio(torch.tensor(audio[1]).float(), audio[0], demucs.samplerate, demucs.audio_channels)
|
617 |
+
audio = apply_model(demucs, audio[None])
|
618 |
|
619 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
620 |
if device != model.device:
|
|
|
622 |
if device == "cuda:0":
|
623 |
model.half()
|
624 |
|
625 |
+
if audio is not None:
|
626 |
+
inputs = processor(
|
627 |
+
text=text_prompt,
|
628 |
+
padding=True,
|
629 |
+
return_tensors="pt",
|
630 |
+
audio=audio, sampling_rate=demucs.samplerate
|
631 |
+
)
|
632 |
+
if device == "cuda:0":
|
633 |
+
inputs["input_features"] = inputs["input_features"].to(torch.float16)
|
634 |
+
else:
|
635 |
+
inputs = processor(
|
636 |
+
text=text_prompt,
|
637 |
+
padding=True,
|
638 |
+
return_tensors="pt",
|
639 |
+
)
|
640 |
|
641 |
+
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps, is_longform=True)
|
642 |
|
643 |
generation_kwargs = dict(
|
644 |
**inputs.to(device),
|
645 |
+
temperature=1.2,
|
646 |
streamer=streamer,
|
647 |
max_new_tokens=max_new_tokens,
|
648 |
)
|
649 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
650 |
thread.start()
|
651 |
+
|
652 |
+
yield wave_header_chunk()
|
653 |
|
654 |
set_seed(seed)
|
655 |
for new_audio in streamer:
|
656 |
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
657 |
+
|
658 |
new_audio = (new_audio * max_range).astype(np.int16)
|
659 |
+
# (sampling_rate, new_audio)
|
660 |
+
yield new_audio.tobytes()
|
661 |
+
|
662 |
|
663 |
|
664 |
demo = gr.Interface(
|
665 |
fn=generate_audio,
|
666 |
inputs=[
|
667 |
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
|
668 |
+
gr.Audio(source="upload", type="numpy", label="Conditioning audio"),
|
669 |
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
|
670 |
gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
|
671 |
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
|
672 |
],
|
673 |
outputs=[
|
674 |
+
gr.Audio(label="Generated Music", autoplay=True, interactive=False, streaming=True)
|
675 |
],
|
676 |
examples=[
|
677 |
+
["An 80s driving pop song with heavy drums and synth pads in the background", None, 30, 1.5, 5],
|
678 |
+
["A cheerful country song with acoustic guitars", None, 30, 1.5, 5],
|
679 |
+
["90s rock song with electric guitar and heavy drums", None, 30, 1.5, 5],
|
680 |
+
["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", None, 30, 1.5, 5],
|
681 |
+
["lofi slow bpm electro chill with organic samples", None, 30, 1.5, 5],
|
682 |
],
|
683 |
title=title,
|
684 |
description=description,
|
685 |
+
allow_flagging=False,
|
686 |
article=article,
|
687 |
cache_examples=False,
|
688 |
)
|
689 |
|
690 |
|
691 |
+
demo.queue().launch(debug=True)
|