Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import streamlit as st
|
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b',
|
9 |
bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]'
|
@@ -17,16 +18,19 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
17 |
torch_dtype=torch.float16, low_cpu_mem_usage=False
|
18 |
).to(device=device, non_blocking=True)
|
19 |
_ = model.eval()
|
20 |
-
|
21 |
print("Model loading done!")
|
22 |
|
23 |
def gpt(prompt):
|
|
|
|
|
24 |
with torch.no_grad():
|
25 |
tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
|
26 |
gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=256)
|
27 |
generated = tokenizer.batch_decode(gen_tokens)[0]
|
28 |
|
29 |
return generated
|
|
|
30 |
|
31 |
#prompts
|
32 |
st.title("์ฌ๋ฌ๋ถ๋ค์ ๋ฌธ์ฅ์ ์์ฑํด์ค๋๋ค. ๐ค")
|
|
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
+
'''
|
8 |
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b',
|
10 |
bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]'
|
|
|
18 |
torch_dtype=torch.float16, low_cpu_mem_usage=False
|
19 |
).to(device=device, non_blocking=True)
|
20 |
_ = model.eval()
|
21 |
+
'''
|
22 |
print("Model loading done!")
|
23 |
|
24 |
def gpt(prompt):
|
25 |
+
return prompt
|
26 |
+
'''
|
27 |
with torch.no_grad():
|
28 |
tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
|
29 |
gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=256)
|
30 |
generated = tokenizer.batch_decode(gen_tokens)[0]
|
31 |
|
32 |
return generated
|
33 |
+
'''
|
34 |
|
35 |
#prompts
|
36 |
st.title("์ฌ๋ฌ๋ถ๋ค์ ๋ฌธ์ฅ์ ์์ฑํด์ค๋๋ค. ๐ค")
|