# -*-coding:utf-8-*- import streamlit as st # code from https://huggingface.co/kakaobrain/kogpt import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b', bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]' ) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = AutoModelForCausalLM.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b', pad_token_id=tokenizer.eos_token_id, torch_dtype=torch.float16, low_cpu_mem_usage=False ).to(device=device, non_blocking=True) _ = model.eval() print("Model loading done!") def gpt(prompt): with torch.no_grad(): tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True) gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=256) generated = tokenizer.batch_decode(gen_tokens)[0] return generated #prompts st.title("여러분들의 문장을 완성해줍니다. 🤖") st.markdown("카카오 gpt 사용합니다.") st.subheader("몇가지 예제: ") example_1_str = "오늘의 날씨는 너무 눈부시다. 내일은 " example_2_str = "우리는 행복을 언제나 갈망하지만 항상 " example_1 = st.button(example_1_str) example_2 = st.button(example_2_str) textbox = st.text_area('오늘은 아름다움을 향해 달리고 ', '',height=100, max_chars=500 ) button = st.button('생성:') # output st.subheader("결과값: ") if example_1: with st.spinner('In progress.......'): output_text = gpt(example_1_str) st.markdown("## "+output_text) if example_2: with st.spinner('In progress.......'): output_text = gpt(example_2_str) st.markdown("## "+output_text) if button: with st.spinner('In progress.......'): if textbox: output_text = gpt(textbox) else: output_text = " " st.markdown("## "+output_text)