File size: 5,598 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
from PIL import Image

import math
import os
import random
import torch
import json
import torch.utils.data
import numpy as np
import librosa
from librosa.util import normalize
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn

import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm

MAX_WAV_VALUE = 32768.0


def load_wav(full_path):
    sampling_rate, data = read(full_path)
    return data, sampling_rate


def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)


def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output


def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output


mel_basis = {}
hann_window = {}


def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
    if torch.min(y) < -1.:
        print('min value is ', torch.min(y))
    if torch.max(y) > 1.:
        print('max value is ', torch.max(y))

    global mel_basis, hann_window
    if fmax not in mel_basis:
        mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
        hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)

    y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
    y = y.squeeze(1)

    # complex tensor as default, then use view_as_real for future pytorch compatibility
    spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
                      center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
    spec = torch.view_as_real(spec)
    spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))

    spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
    spec = spectral_normalize_torch(spec)

    return spec


def spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
    if torch.min(y) < -1.:
        print('min value is ', torch.min(y))
    if torch.max(y) > 1.:
        print('max value is ', torch.max(y))

    global hann_window
    hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)

    y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
    y = y.squeeze(1)

    # complex tensor as default, then use view_as_real for future pytorch compatibility
    spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
                      center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
    spec = torch.view_as_real(spec)
    spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))

    return spec


def normalize_spectrogram(
    spectrogram: torch.Tensor,
    max_value: float = 200, 
    min_value: float = 1e-5, 
    power: float = 1., 
    inverse: bool = False
) -> torch.Tensor:
    # Rescale to 0-1
    max_value = np.log(max_value) # 5.298317366548036
    min_value = np.log(min_value) # -11.512925464970229

    assert spectrogram.max() <= max_value and spectrogram.min() >= min_value

    data = (spectrogram - min_value) / (max_value - min_value)

    # Invert
    if inverse:
        data = 1 - data

    # Apply the power curve
    data = torch.pow(data, power)  
    
    # 1D -> 3D
    data = data.unsqueeze(1)
    # data = data.repeat(1, 3, 1, 1)
    # (b f) (h w) c -> b f (h w) c -> b t (h w) c -> b t (h' w') c 

    # Flip Y axis: image origin at the top-left corner, spectrogram origin at the bottom-left corner
    data = torch.flip(data, [1])

    return data

def denormalize_spectrogram(
    data: torch.Tensor,
    max_value: float = 200, 
    min_value: float = 1e-5, 
    power: float = 1, 
    inverse: bool = False,
) -> torch.Tensor:
    
    max_value = np.log(max_value)
    min_value = np.log(min_value)

    # Flip Y axis: image origin at the top-left corner, spectrogram origin at the bottom-left corner
    data = torch.flip(data, [1])

    assert len(data.shape) == 3, "Expected 3 dimensions, got {}".format(len(data.shape))
    
    if data.shape[0] == 1:
        data = data.repeat(3, 1, 1)
        
    assert data.shape[0] == 3, "Expected 3 channels, got {}".format(data.shape[0])
    data = data[0]

    # Reverse the power curve
    data = torch.pow(data, 1 / power)

    # Invert
    if inverse:
        data = 1 - data

    # Rescale to max value
    spectrogram = data * (max_value - min_value) + min_value

    return spectrogram


def get_mel_spectrogram_from_audio(audio):
    # for auffusion 
    spec = mel_spectrogram(audio, n_fft=2048, num_mels=256, sampling_rate=16000, hop_size=160, win_size=1024, fmin=0, fmax=8000, center=False)

    # for audioldm
    # spec = mel_spectrogram(audio, n_fft=1024, num_mels=64, sampling_rate=16000, hop_size=160, win_size=1024, fmin=0, fmax=8000, center=False)
    spec = normalize_spectrogram(spec)
    return spec