Spaces:
Running
on
Zero
Running
on
Zero
File size: 66,548 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 |
import torch
import torchvision
import torchaudio
import torchvision.transforms as transforms
from diffusers import UNet2DConditionModel, ControlNetModel
from foleycrafter.pipelines.pipeline_controlnet import StableDiffusionControlNetPipeline
from foleycrafter.pipelines.auffusion_pipeline import AuffusionNoAdapterPipeline, Generator
from foleycrafter.models.auffusion_unet import UNet2DConditionModel as af_UNet2DConditionModel
from diffusers.models import AutoencoderKLTemporalDecoder, AutoencoderKL
from diffusers.schedulers import EulerDiscreteScheduler, DDIMScheduler, PNDMScheduler, KarrasDiffusionSchedulers
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection,\
SpeechT5HifiGan, ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast,\
CLIPTextModel, CLIPTokenizer
import glob
from moviepy.editor import ImageSequenceClip, AudioFileClip, VideoFileClip, VideoClip
from moviepy.audio.AudioClip import AudioArrayClip
import numpy as np
from safetensors import safe_open
import random
from typing import Union, Optional
import decord
import os
import os.path as osp
import imageio
import soundfile as sf
from PIL import Image, ImageOps
import torch.distributed as dist
import io
from omegaconf import OmegaConf
import json
from dataclasses import dataclass
from enum import Enum
import typing as T
import warnings
import pydub
from scipy.io import wavfile
from einops import rearrange
def zero_rank_print(s):
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s, flush=True)
def build_foleycrafter(
pretrained_model_name_or_path: str="auffusion/auffusion-full-no-adapter",
) -> StableDiffusionControlNetPipeline:
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae')
unet = af_UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet')
scheduler = PNDMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler')
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer')
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder')
controlnet = ControlNetModel.from_unet(unet, conditioning_channels=1)
pipe = StableDiffusionControlNetPipeline(
vae=vae,
controlnet=controlnet,
unet=unet,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder,
feature_extractor=None,
safety_checker=None,
requires_safety_checker=False,
)
return pipe
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
if len(videos.shape) == 4:
videos = videos.unsqueeze(0)
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp((x * 255), 0, 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_videos_from_pil_list(videos: list, path: str, fps=7):
for i in range(len(videos)):
videos[i] = ImageOps.scale(videos[i], 255)
imageio.mimwrite(path, videos, fps=fps)
def seed_everything(seed: int) -> None:
r"""Sets the seed for generating random numbers in :pytorch:`PyTorch`,
:obj:`numpy` and :python:`Python`.
Args:
seed (int): The desired seed.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_video_frames(video: np.ndarray, num_frames: int=200):
video_length = video.shape[0]
video_idx = np.linspace(0, video_length-1, num_frames, dtype=int)
video = video[video_idx, ...]
return video
def random_audio_video_clip(audio: np.ndarray, video: np.ndarray, fps:float, \
sample_rate:int=16000, duration:int=5, num_frames: int=20):
"""
Random sample video clips with duration
"""
video_length = video.shape[0]
audio_length = audio.shape[-1]
av_duration = int(video_length / fps)
assert av_duration >= duration,\
f"video duration {av_duration} is less than {duration}"
# random sample start time
start_time = random.uniform(0, av_duration - duration)
end_time = start_time + duration
start_idx, end_idx = start_time / av_duration, end_time / av_duration
video_start_frame, video_end_frame\
= video_length * start_idx, video_length * end_idx
audio_start_frame, audio_end_frame\
= audio_length * start_idx, audio_length * end_idx
# print(f"time_idx : {start_time}:{end_time}")
# print(f"video_idx: {video_start_frame}:{video_end_frame}")
# print(f"audio_idx: {audio_start_frame}:{audio_end_frame}")
audio_idx = np.linspace(audio_start_frame, audio_end_frame, sample_rate * duration, dtype=int)
video_idx = np.linspace(video_start_frame, video_end_frame, num_frames, dtype=int)
audio = audio[..., audio_idx]
video = video[video_idx, ...]
return audio, video
def get_full_indices(reader: Union[decord.VideoReader, decord.AudioReader])\
-> np.ndarray:
if isinstance(reader, decord.VideoReader):
return np.linspace(0, len(reader) - 1, len(reader), dtype=int)
elif isinstance(reader, decord.AudioReader):
return np.linspace(0, reader.shape[-1] - 1, reader.shape[-1], dtype=int)
def get_frames(video_path:str, onset_list, frame_nums=1024):
video = decord.VideoReader(video_path)
video_frame = len(video)
frames_list = []
for start, end in onset_list:
video_start = int(start / frame_nums * video_frame)
video_end = int(end / frame_nums * video_frame)
frames_list.extend(range(video_start, video_end))
frames = video.get_batch(frames_list).asnumpy()
return frames
def get_frames_in_video(video_path:str, onset_list, frame_nums=1024, audio_length_in_s=10):
# this function consider the video length
video = decord.VideoReader(video_path)
video_frame = len(video)
duration = video_frame / video.get_avg_fps()
frames_list = []
video_onset_list = []
for start, end in onset_list:
if int(start / frame_nums * duration) >= audio_length_in_s:
continue
video_start = int(start / audio_length_in_s * duration / frame_nums * video_frame)
if video_start >= video_frame:
continue
video_end = int(end / audio_length_in_s * duration / frame_nums * video_frame)
video_onset_list.append([int(start / audio_length_in_s * duration), int(end / audio_length_in_s * duration)])
frames_list.extend(range(video_start, video_end))
frames = video.get_batch(frames_list).asnumpy()
return frames, video_onset_list
def save_multimodal(video, audio, output_path, audio_fps:int=16000, video_fps:int=8, remove_audio:bool=True):
imgs = [img for img in video]
# if audio.shape[0] == 1 or audio.shape[0] == 2:
# audio = audio.T #[len, channel]
# audio = np.repeat(audio, 2, axis=1)
output_dir = osp.dirname(output_path)
try:
wavfile.write(osp.join(output_dir, "audio.wav"), audio_fps, audio)
except:
sf.write(osp.join(output_dir, "audio.wav"), audio, audio_fps)
audio_clip = AudioFileClip(osp.join(output_dir, "audio.wav"))
# audio_clip = AudioArrayClip(audio, fps=audio_fps)
video_clip = ImageSequenceClip(imgs, fps=video_fps)
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(output_path, video_fps, audio=True, audio_fps=audio_fps)
if remove_audio:
os.remove(osp.join(output_dir, "audio.wav"))
return
def save_multimodal_by_frame(video, audio, output_path, audio_fps:int=16000):
imgs = [img for img in video]
# if audio.shape[0] == 1 or audio.shape[0] == 2:
# audio = audio.T #[len, channel]
# audio = np.repeat(audio, 2, axis=1)
# output_dir = osp.dirname(output_path)
output_dir = output_path
wavfile.write(osp.join(output_dir, "audio.wav"), audio_fps, audio)
audio_clip = AudioFileClip(osp.join(output_dir, "audio.wav"))
# audio_clip = AudioArrayClip(audio, fps=audio_fps)
os.makedirs(osp.join(output_dir, 'frames'), exist_ok=True)
for num, img in enumerate(imgs):
if isinstance(img, np.ndarray):
img = Image.fromarray(img.astype(np.uint8))
img.save(osp.join(output_dir, 'frames', f"{num}.jpg"))
return
def sanity_check(data: dict, save_path: str="sanity_check", batch_size: int=4, sample_rate: int=16000):
video_path = osp.join(save_path, 'video')
audio_path = osp.join(save_path, 'audio')
av_path = osp.join(save_path, 'av')
video, audio, text = data['pixel_values'], data['audio'], data['text']
video = (video / 2 + 0.5).clamp(0, 1)
zero_rank_print(f"Saving {text} audio: {audio[0].shape} video: {video[0].shape}")
for bsz in range(batch_size):
os.makedirs(video_path, exist_ok=True)
os.makedirs(audio_path, exist_ok=True)
os.makedirs(av_path, exist_ok=True)
# save_videos_grid(video[bsz:bsz+1,...], f"{osp.join(video_path, str(bsz) + '.mp4')}")
bsz_audio = audio[bsz,...].permute(1, 0).cpu().numpy()
bsz_video = video_tensor_to_np(video[bsz, ...])
sf.write(f"{osp.join(audio_path, str(bsz) + '.wav')}", bsz_audio, sample_rate)
save_multimodal(bsz_video, bsz_audio, osp.join(av_path, str(bsz) + '.mp4'))
def video_tensor_to_np(video: torch.Tensor, rescale: bool=True, scale: bool=False):
if scale:
video = (video / 2 + 0.5).clamp(0, 1)
# c f h w -> f h w c
if video.shape[0] == 3:
video = video.permute(1, 2, 3, 0).detach().cpu().numpy()
elif video.shape[1] == 3:
video = video.permute(0, 2, 3, 1).detach().cpu().numpy()
if rescale:
video = video * 255
return video
def composite_audio_video(video: str, audio: str, path:str, video_fps:int=7, audio_sample_rate:int=16000):
video = decord.VideoReader(video)
audio = decord.AudioReader(audio, sample_rate=audio_sample_rate)
audio = audio.get_batch(get_full_indices(audio)).asnumpy()
video = video.get_batch(get_full_indices(video)).asnumpy()
save_multimodal(video, audio, path, audio_fps=audio_sample_rate, video_fps=video_fps)
return
# for video pipeline
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def print_gpu_memory_usage(info: str, cuda_id:int=0):
print(f">>> {info} <<<")
reserved = torch.cuda.memory_reserved(cuda_id) / 1024 ** 3
used = torch.cuda.memory_allocated(cuda_id) / 1024 ** 3
print("total: ", reserved, "G")
print("used: ", used, "G")
print("available: ", reserved - used, "G")
# use for dsp mel2spec
@dataclass(frozen=True)
class SpectrogramParams:
"""
Parameters for the conversion from audio to spectrograms to images and back.
Includes helpers to convert to and from EXIF tags, allowing these parameters to be stored
within spectrogram images.
To understand what these parameters do and to customize them, read `spectrogram_converter.py`
and the linked torchaudio documentation.
"""
# Whether the audio is stereo or mono
stereo: bool = False
# FFT parameters
sample_rate: int = 44100
step_size_ms: int = 10
window_duration_ms: int = 100
padded_duration_ms: int = 400
# Mel scale parameters
num_frequencies: int = 200
# TODO(hayk): Set these to [20, 20000] for newer models
min_frequency: int = 0
max_frequency: int = 10000
mel_scale_norm: T.Optional[str] = None
mel_scale_type: str = "htk"
max_mel_iters: int = 200
# Griffin Lim parameters
num_griffin_lim_iters: int = 32
# Image parameterization
power_for_image: float = 0.25
class ExifTags(Enum):
"""
Custom EXIF tags for the spectrogram image.
"""
SAMPLE_RATE = 11000
STEREO = 11005
STEP_SIZE_MS = 11010
WINDOW_DURATION_MS = 11020
PADDED_DURATION_MS = 11030
NUM_FREQUENCIES = 11040
MIN_FREQUENCY = 11050
MAX_FREQUENCY = 11060
POWER_FOR_IMAGE = 11070
MAX_VALUE = 11080
@property
def n_fft(self) -> int:
"""
The number of samples in each STFT window, with padding.
"""
return int(self.padded_duration_ms / 1000.0 * self.sample_rate)
@property
def win_length(self) -> int:
"""
The number of samples in each STFT window.
"""
return int(self.window_duration_ms / 1000.0 * self.sample_rate)
@property
def hop_length(self) -> int:
"""
The number of samples between each STFT window.
"""
return int(self.step_size_ms / 1000.0 * self.sample_rate)
def to_exif(self) -> T.Dict[int, T.Any]:
"""
Return a dictionary of EXIF tags for the current values.
"""
return {
self.ExifTags.SAMPLE_RATE.value: self.sample_rate,
self.ExifTags.STEREO.value: self.stereo,
self.ExifTags.STEP_SIZE_MS.value: self.step_size_ms,
self.ExifTags.WINDOW_DURATION_MS.value: self.window_duration_ms,
self.ExifTags.PADDED_DURATION_MS.value: self.padded_duration_ms,
self.ExifTags.NUM_FREQUENCIES.value: self.num_frequencies,
self.ExifTags.MIN_FREQUENCY.value: self.min_frequency,
self.ExifTags.MAX_FREQUENCY.value: self.max_frequency,
self.ExifTags.POWER_FOR_IMAGE.value: float(self.power_for_image),
}
class SpectrogramImageConverter:
"""
Convert between spectrogram images and audio segments.
This is a wrapper around SpectrogramConverter that additionally converts from spectrograms
to images and back. The real audio processing lives in SpectrogramConverter.
"""
def __init__(self, params: SpectrogramParams, device: str = "cuda"):
self.p = params
self.device = device
self.converter = SpectrogramConverter(params=params, device=device)
def spectrogram_image_from_audio(
self,
segment: pydub.AudioSegment,
) -> Image.Image:
"""
Compute a spectrogram image from an audio segment.
Args:
segment: Audio segment to convert
Returns:
Spectrogram image (in pillow format)
"""
assert int(segment.frame_rate) == self.p.sample_rate, "Sample rate mismatch"
if self.p.stereo:
if segment.channels == 1:
print("WARNING: Mono audio but stereo=True, cloning channel")
segment = segment.set_channels(2)
elif segment.channels > 2:
print("WARNING: Multi channel audio, reducing to stereo")
segment = segment.set_channels(2)
else:
if segment.channels > 1:
print("WARNING: Stereo audio but stereo=False, setting to mono")
segment = segment.set_channels(1)
spectrogram = self.converter.spectrogram_from_audio(segment)
image = image_from_spectrogram(
spectrogram,
power=self.p.power_for_image,
)
# Store conversion params in exif metadata of the image
exif_data = self.p.to_exif()
exif_data[SpectrogramParams.ExifTags.MAX_VALUE.value] = float(np.max(spectrogram))
exif = image.getexif()
exif.update(exif_data.items())
return image
def audio_from_spectrogram_image(
self,
image: Image.Image,
apply_filters: bool = True,
max_value: float = 30e6,
) -> pydub.AudioSegment:
"""
Reconstruct an audio segment from a spectrogram image.
Args:
image: Spectrogram image (in pillow format)
apply_filters: Apply post-processing to improve the reconstructed audio
max_value: Scaled max amplitude of the spectrogram. Shouldn't matter.
"""
spectrogram = spectrogram_from_image(
image,
max_value=max_value,
power=self.p.power_for_image,
stereo=self.p.stereo,
)
segment = self.converter.audio_from_spectrogram(
spectrogram,
apply_filters=apply_filters,
)
return segment
def image_from_spectrogram(spectrogram: np.ndarray, power: float = 0.25) -> Image.Image:
"""
Compute a spectrogram image from a spectrogram magnitude array.
This is the inverse of spectrogram_from_image, except for discretization error from
quantizing to uint8.
Args:
spectrogram: (channels, frequency, time)
power: A power curve to apply to the spectrogram to preserve contrast
Returns:
image: (frequency, time, channels)
"""
# Rescale to 0-1
max_value = np.max(spectrogram)
data = spectrogram / max_value
# Apply the power curve
data = np.power(data, power)
# Rescale to 0-255
data = data * 255
# Invert
data = 255 - data
# Convert to uint8
data = data.astype(np.uint8)
# Munge channels into a PIL image
if data.shape[0] == 1:
# TODO(hayk): Do we want to write single channel to disk instead?
image = Image.fromarray(data[0], mode="L").convert("RGB")
elif data.shape[0] == 2:
data = np.array([np.zeros_like(data[0]), data[0], data[1]]).transpose(1, 2, 0)
image = Image.fromarray(data, mode="RGB")
else:
raise NotImplementedError(f"Unsupported number of channels: {data.shape[0]}")
# Flip Y
image = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
return image
def spectrogram_from_image(
image: Image.Image,
power: float = 0.25,
stereo: bool = False,
max_value: float = 30e6,
) -> np.ndarray:
"""
Compute a spectrogram magnitude array from a spectrogram image.
This is the inverse of image_from_spectrogram, except for discretization error from
quantizing to uint8.
Args:
image: (frequency, time, channels)
power: The power curve applied to the spectrogram
stereo: Whether the spectrogram encodes stereo data
max_value: The max value of the original spectrogram. In practice doesn't matter.
Returns:
spectrogram: (channels, frequency, time)
"""
# Convert to RGB if single channel
if image.mode in ("P", "L"):
image = image.convert("RGB")
# Flip Y
image = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
# Munge channels into a numpy array of (channels, frequency, time)
data = np.array(image).transpose(2, 0, 1)
if stereo:
# Take the G and B channels as done in image_from_spectrogram
data = data[[1, 2], :, :]
else:
data = data[0:1, :, :]
# Convert to floats
data = data.astype(np.float32)
# Invert
data = 255 - data
# Rescale to 0-1
data = data / 255
# Reverse the power curve
data = np.power(data, 1 / power)
# Rescale to max value
data = data * max_value
return data
class SpectrogramConverter:
"""
Convert between audio segments and spectrogram tensors using torchaudio.
In this class a "spectrogram" is defined as a (batch, time, frequency) tensor with float values
that represent the amplitude of the frequency at that time bucket (in the frequency domain).
Frequencies are given in the perceptul Mel scale defined by the params. A more specific term
used in some functions is "mel amplitudes".
The spectrogram computed from `spectrogram_from_audio` is complex valued, but it only
returns the amplitude, because the phase is chaotic and hard to learn. The function
`audio_from_spectrogram` is an approximate inverse of `spectrogram_from_audio`, which
approximates the phase information using the Griffin-Lim algorithm.
Each channel in the audio is treated independently, and the spectrogram has a batch dimension
equal to the number of channels in the input audio segment.
Both the Griffin Lim algorithm and the Mel scaling process are lossy.
For more information, see https://pytorch.org/audio/stable/transforms.html
"""
def __init__(self, params: SpectrogramParams, device: str = "cuda"):
self.p = params
self.device = check_device(device)
if device.lower().startswith("mps"):
warnings.warn(
"WARNING: MPS does not support audio operations, falling back to CPU for them",
stacklevel=2,
)
self.device = "cpu"
# https://pytorch.org/audio/stable/generated/torchaudio.transforms.Spectrogram.html
self.spectrogram_func = torchaudio.transforms.Spectrogram(
n_fft=params.n_fft,
hop_length=params.hop_length,
win_length=params.win_length,
pad=0,
window_fn=torch.hann_window,
power=None,
normalized=False,
wkwargs=None,
center=True,
pad_mode="reflect",
onesided=True,
).to(self.device)
# https://pytorch.org/audio/stable/generated/torchaudio.transforms.GriffinLim.html
self.inverse_spectrogram_func = torchaudio.transforms.GriffinLim(
n_fft=params.n_fft,
n_iter=params.num_griffin_lim_iters,
win_length=params.win_length,
hop_length=params.hop_length,
window_fn=torch.hann_window,
power=1.0,
wkwargs=None,
momentum=0.99,
length=None,
rand_init=True,
).to(self.device)
# https://pytorch.org/audio/stable/generated/torchaudio.transforms.MelScale.html
self.mel_scaler = torchaudio.transforms.MelScale(
n_mels=params.num_frequencies,
sample_rate=params.sample_rate,
f_min=params.min_frequency,
f_max=params.max_frequency,
n_stft=params.n_fft // 2 + 1,
norm=params.mel_scale_norm,
mel_scale=params.mel_scale_type,
).to(self.device)
# https://pytorch.org/audio/stable/generated/torchaudio.transforms.InverseMelScale.html
self.inverse_mel_scaler = torchaudio.transforms.InverseMelScale(
n_stft=params.n_fft // 2 + 1,
n_mels=params.num_frequencies,
sample_rate=params.sample_rate,
f_min=params.min_frequency,
f_max=params.max_frequency,
# max_iter=params.max_mel_iters, # for higher verson of torchaudio
# tolerance_loss=1e-5, # for higher verson of torchaudio
# tolerance_change=1e-8, # for higher verson of torchaudio
# sgdargs=None, # for higher verson of torchaudio
norm=params.mel_scale_norm,
mel_scale=params.mel_scale_type,
).to(self.device)
def spectrogram_from_audio(
self,
audio: pydub.AudioSegment,
) -> np.ndarray:
"""
Compute a spectrogram from an audio segment.
Args:
audio: Audio segment which must match the sample rate of the params
Returns:
spectrogram: (channel, frequency, time)
"""
assert int(audio.frame_rate) == self.p.sample_rate, "Audio sample rate must match params"
# Get the samples as a numpy array in (batch, samples) shape
waveform = np.array([c.get_array_of_samples() for c in audio.split_to_mono()])
# Convert to floats if necessary
if waveform.dtype != np.float32:
waveform = waveform.astype(np.float32)
waveform_tensor = torch.from_numpy(waveform).to(self.device)
amplitudes_mel = self.mel_amplitudes_from_waveform(waveform_tensor)
return amplitudes_mel.cpu().numpy()
def audio_from_spectrogram(
self,
spectrogram: np.ndarray,
apply_filters: bool = True,
) -> pydub.AudioSegment:
"""
Reconstruct an audio segment from a spectrogram.
Args:
spectrogram: (batch, frequency, time)
apply_filters: Post-process with normalization and compression
Returns:
audio: Audio segment with channels equal to the batch dimension
"""
# Move to device
amplitudes_mel = torch.from_numpy(spectrogram).to(self.device)
# Reconstruct the waveform
waveform = self.waveform_from_mel_amplitudes(amplitudes_mel)
# Convert to audio segment
segment = audio_from_waveform(
samples=waveform.cpu().numpy(),
sample_rate=self.p.sample_rate,
# Normalize the waveform to the range [-1, 1]
normalize=True,
)
# Optionally apply post-processing filters
if apply_filters:
segment = apply_filters_func(
segment,
compression=False,
)
return segment
def mel_amplitudes_from_waveform(
self,
waveform: torch.Tensor,
) -> torch.Tensor:
"""
Torch-only function to compute Mel-scale amplitudes from a waveform.
Args:
waveform: (batch, samples)
Returns:
amplitudes_mel: (batch, frequency, time)
"""
# Compute the complex-valued spectrogram
spectrogram_complex = self.spectrogram_func(waveform)
# Take the magnitude
amplitudes = torch.abs(spectrogram_complex)
# Convert to mel scale
return self.mel_scaler(amplitudes)
def waveform_from_mel_amplitudes(
self,
amplitudes_mel: torch.Tensor,
) -> torch.Tensor:
"""
Torch-only function to approximately reconstruct a waveform from Mel-scale amplitudes.
Args:
amplitudes_mel: (batch, frequency, time)
Returns:
waveform: (batch, samples)
"""
# Convert from mel scale to linear
amplitudes_linear = self.inverse_mel_scaler(amplitudes_mel)
# Run the approximate algorithm to compute the phase and recover the waveform
return self.inverse_spectrogram_func(amplitudes_linear)
def check_device(device: str, backup: str = "cpu") -> str:
"""
Check that the device is valid and available. If not,
"""
cuda_not_found = device.lower().startswith("cuda") and not torch.cuda.is_available()
mps_not_found = device.lower().startswith("mps") and not torch.backends.mps.is_available()
if cuda_not_found or mps_not_found:
warnings.warn(f"WARNING: {device} is not available, using {backup} instead.", stacklevel=3)
return backup
return device
def audio_from_waveform(
samples: np.ndarray, sample_rate: int, normalize: bool = False
) -> pydub.AudioSegment:
"""
Convert a numpy array of samples of a waveform to an audio segment.
Args:
samples: (channels, samples) array
"""
# Normalize volume to fit in int16
if normalize:
samples *= np.iinfo(np.int16).max / np.max(np.abs(samples))
# Transpose and convert to int16
samples = samples.transpose(1, 0)
samples = samples.astype(np.int16)
# Write to the bytes of a WAV file
wav_bytes = io.BytesIO()
wavfile.write(wav_bytes, sample_rate, samples)
wav_bytes.seek(0)
# Read into pydub
return pydub.AudioSegment.from_wav(wav_bytes)
def apply_filters_func(segment: pydub.AudioSegment, compression: bool = False) -> pydub.AudioSegment:
"""
Apply post-processing filters to the audio segment to compress it and
keep at a -10 dBFS level.
"""
# TODO(hayk): Come up with a principled strategy for these filters and experiment end-to-end.
# TODO(hayk): Is this going to make audio unbalanced between sequential clips?
if compression:
segment = pydub.effects.normalize(
segment,
headroom=0.1,
)
segment = segment.apply_gain(-10 - segment.dBFS)
# TODO(hayk): This is quite slow, ~1.7 seconds on a beefy CPU
segment = pydub.effects.compress_dynamic_range(
segment,
threshold=-20.0,
ratio=4.0,
attack=5.0,
release=50.0,
)
desired_db = -12
segment = segment.apply_gain(desired_db - segment.dBFS)
segment = pydub.effects.normalize(
segment,
headroom=0.1,
)
return segment
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif 'to_out.0.weight' in new_path:
checkpoint[new_path] = old_checkpoint[path['old']].squeeze()
elif any([qkv in new_path for qkv in ['to_q', 'to_k', 'to_v']]):
checkpoint[new_path] = old_checkpoint[path['old']].squeeze()
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
if controlnet:
unet_params = original_config.model.params.control_stage_config.params
else:
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim = [5, 10, 20, 20]
class_embed_type = None
projection_class_embeddings_input_dim = None
if "num_classes" in unet_params:
if unet_params.num_classes == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in unet_params
projection_class_embeddings_input_dim = unet_params.adm_in_channels
else:
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}")
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": unet_params.context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
}
if not controlnet:
config["out_channels"] = unet_params.out_channels
config["up_block_types"] = tuple(up_block_types)
return config
def create_vae_diffusers_config(original_config, image_size: int):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
}
return config
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
if controlnet:
unet_key = "control_model."
else:
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] is None:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
if not controlnet:
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
if controlnet:
# conditioning embedding
orig_index = 0
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
orig_index += 2
diffusers_index = 0
while diffusers_index < 6:
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
diffusers_index += 1
orig_index += 2
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
# down blocks
for i in range(num_input_blocks):
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")
# mid block
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config, only_decoder=False, only_encoder=False):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
if only_decoder:
new_checkpoint = {k: v for k, v in new_checkpoint.items() if k.startswith('decoder') or k.startswith('post_quant')}
elif only_encoder:
new_checkpoint = {k: v for k, v in new_checkpoint.items() if k.startswith('encoder') or k.startswith('quant')}
return new_checkpoint
def convert_ldm_clip_checkpoint(checkpoint):
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
return text_model_dict
def convert_lora_model_level(state_dict, unet, text_encoder=None, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
"""convert lora in model level instead of pipeline leval
"""
visited = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
assert text_encoder is not None, (
'text_encoder must be passed since lora contains text encoder layers')
curr_layer = text_encoder
else:
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
# NOTE: load lycon, meybe have bugs :(
if 'conv_in' in pair_keys[0]:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
weight_up = weight_up.view(weight_up.size(0), -1)
weight_down = weight_down.view(weight_down.size(0), -1)
shape = [e for e in curr_layer.weight.data.shape]
shape[1] = 4
curr_layer.weight.data[:, :4, ...] += alpha * (weight_up @ weight_down).view(*shape)
elif 'conv' in pair_keys[0]:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
weight_up = weight_up.view(weight_up.size(0), -1)
weight_down = weight_down.view(weight_down.size(0), -1)
shape = [e for e in curr_layer.weight.data.shape]
curr_layer.weight.data += alpha * (weight_up @ weight_down).view(*shape)
elif len(state_dict[pair_keys[0]].shape) == 4:
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
# update visited list
for item in pair_keys:
visited.append(item)
return unet, text_encoder
def denormalize_spectrogram(
data: torch.Tensor,
max_value: float = 200,
min_value: float = 1e-5,
power: float = 1,
inverse: bool = False,
) -> torch.Tensor:
max_value = np.log(max_value)
min_value = np.log(min_value)
# Flip Y axis: image origin at the top-left corner, spectrogram origin at the bottom-left corner
data = torch.flip(data, [1])
assert len(data.shape) == 3, "Expected 3 dimensions, got {}".format(len(data.shape))
if data.shape[0] == 1:
data = data.repeat(3, 1, 1)
assert data.shape[0] == 3, "Expected 3 channels, got {}".format(data.shape[0])
data = data[0]
# Reverse the power curve
data = torch.pow(data, 1 / power)
# Invert
if inverse:
data = 1 - data
# Rescale to max value
spectrogram = data * (max_value - min_value) + min_value
return spectrogram
class ToTensor1D(torchvision.transforms.ToTensor):
def __call__(self, tensor: np.ndarray):
tensor_2d = super(ToTensor1D, self).__call__(tensor[..., np.newaxis])
return tensor_2d.squeeze_(0)
def scale(old_value, old_min, old_max, new_min, new_max):
old_range = (old_max - old_min)
new_range = (new_max - new_min)
new_value = (((old_value - old_min) * new_range) / old_range) + new_min
return new_value
def read_frames_with_moviepy(video_path, max_frame_nums=None):
clip = VideoFileClip(video_path)
duration = clip.duration
frames = []
for frame in clip.iter_frames():
frames.append(frame)
if max_frame_nums is not None:
frames_idx = np.linspace(0, len(frames) - 1, max_frame_nums, dtype=int)
return np.array(frames)[frames_idx,...], duration
def read_frames_with_moviepy_resample(video_path, save_path):
vision_transform_list = [
transforms.Resize((128, 128)),
transforms.CenterCrop((112, 112)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
video_transform = transforms.Compose(vision_transform_list)
os.makedirs(save_path, exist_ok=True)
command = f'ffmpeg -v quiet -y -i \"{video_path}\" -f image2 -vf \"scale=-1:360,fps=15\" -qscale:v 3 \"{save_path}\"/frame%06d.jpg'
os.system(command)
frame_list = glob.glob(f'{save_path}/*.jpg')
frame_list.sort()
convert_tensor = transforms.ToTensor()
frame_list = [convert_tensor(np.array(Image.open(frame))) for frame in frame_list]
imgs = torch.stack(frame_list, dim=0)
imgs = video_transform(imgs)
imgs = imgs.permute(1, 0, 2, 3)
return imgs |