import torch import torchaudio import torchaudio.functional from torchvision import transforms import torchvision.transforms.functional as F import torch.nn as nn from PIL import Image import numpy as np import math import random import soundfile import os import librosa import albumentations from torch_pitch_shift import * SR = 22050 class ResizeShortSide(object): def __init__(self, size): super().__init__() self.size = size def __call__(self, x): ''' x must be PIL.Image ''' w, h = x.size short_side = min(w, h) w_target = int((w / short_side) * self.size) h_target = int((h / short_side) * self.size) return x.resize((w_target, h_target)) class Crop(object): def __init__(self, cropped_shape=None, random_crop=False): self.cropped_shape = cropped_shape if cropped_shape is not None: mel_num, spec_len = cropped_shape if random_crop: self.cropper = albumentations.RandomCrop else: self.cropper = albumentations.CenterCrop self.preprocessor = albumentations.Compose([self.cropper(mel_num, spec_len)]) else: self.preprocessor = lambda **kwargs: kwargs def __call__(self, item): item['image'] = self.preprocessor(image=item['image'])['image'] if 'cond_image' in item.keys(): item['cond_image'] = self.preprocessor(image=item['cond_image'])['image'] return item class CropImage(Crop): def __init__(self, *crop_args): super().__init__(*crop_args) class CropFeats(Crop): def __init__(self, *crop_args): super().__init__(*crop_args) def __call__(self, item): item['feature'] = self.preprocessor(image=item['feature'])['image'] return item class CropCoords(Crop): def __init__(self, *crop_args): super().__init__(*crop_args) def __call__(self, item): item['coord'] = self.preprocessor(image=item['coord'])['image'] return item class RandomResizedCrop3D(nn.Module): """Crop the given series of images to random size and aspect ratio. The image can be a PIL Images or a Tensor, in which case it is expected to have [N, ..., H, W] shape, where ... means an arbitrary number of leading dimensions A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size (int or sequence): expected output size of each edge. If size is an int instead of sequence like (h, w), a square output size ``(size, size)`` is made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]). scale (tuple of float): range of size of the origin size cropped ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped. interpolation (int): Desired interpolation enum defined by `filters`_. Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR`` and ``PIL.Image.BICUBIC`` are supported. """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=transforms.InterpolationMode.BILINEAR): super().__init__() if isinstance(size, tuple) and len(size) == 2: self.size = size else: self.size = (size, size) self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image or Tensor): Input image. scale (list): range of scale of the origin size cropped ratio (list): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ width, height = img.size area = height * width for _ in range(10): target_area = area * \ torch.empty(1).uniform_(scale[0], scale[1]).item() log_ratio = torch.log(torch.tensor(ratio)) aspect_ratio = torch.exp( torch.empty(1).uniform_(log_ratio[0], log_ratio[1]) ).item() w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = torch.randint(0, height - h + 1, size=(1,)).item() j = torch.randint(0, width - w + 1, size=(1,)).item() return i, j, h, w # Fallback to central crop in_ratio = float(width) / float(height) if in_ratio < min(ratio): w = width h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = height w = int(round(h * max(ratio))) else: # whole image w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def forward(self, imgs): """ Args: img (PIL Image or Tensor): Image to be cropped and resized. Returns: PIL Image or Tensor: Randomly cropped and resized image. """ i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio) return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation) for img in imgs] class Resize3D(object): def __init__(self, size): super().__init__() self.size = size def __call__(self, imgs): ''' x must be PIL.Image ''' return [x.resize((self.size, self.size)) for x in imgs] class RandomHorizontalFlip3D(object): def __init__(self, p=0.5): super().__init__() self.p = p def __call__(self, imgs): ''' x must be PIL.Image ''' if np.random.rand() < self.p: return [x.transpose(Image.FLIP_LEFT_RIGHT) for x in imgs] else: return imgs class ColorJitter3D(torch.nn.Module): """Randomly change the brightness, contrast and saturation of an image. Args: brightness (float or tuple of float (min, max)): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or the given [min, max]. Should be non negative numbers. contrast (float or tuple of float (min, max)): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given [min, max]. Should be non negative numbers. saturation (float or tuple of float (min, max)): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or the given [min, max]. Should be non negative numbers. hue (float or tuple of float (min, max)): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue] or the given [min, max]. Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): super().__init__() self.brightness = (1-brightness, 1+brightness) self.contrast = (1-contrast, 1+contrast) self.saturation = (1-saturation, 1+saturation) self.hue = (0-hue, 0+hue) @staticmethod def get_params(brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ tfs = [] if brightness is not None: brightness_factor = random.uniform(brightness[0], brightness[1]) tfs.append(transforms.Lambda( lambda img: F.adjust_brightness(img, brightness_factor))) if contrast is not None: contrast_factor = random.uniform(contrast[0], contrast[1]) tfs.append(transforms.Lambda( lambda img: F.adjust_contrast(img, contrast_factor))) if saturation is not None: saturation_factor = random.uniform(saturation[0], saturation[1]) tfs.append(transforms.Lambda( lambda img: F.adjust_saturation(img, saturation_factor))) if hue is not None: hue_factor = random.uniform(hue[0], hue[1]) tfs.append(transforms.Lambda( lambda img: F.adjust_hue(img, hue_factor))) random.shuffle(tfs) transform = transforms.Compose(tfs) return transform def forward(self, imgs): """ Args: img (PIL Image or Tensor): Input image. Returns: PIL Image or Tensor: Color jittered image. """ transform = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) return [transform(img) for img in imgs] class ToTensor3D(object): def __init__(self): super().__init__() def __call__(self, imgs): ''' x must be PIL.Image ''' return [F.to_tensor(img) for img in imgs] class Normalize3D(object): def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=False): super().__init__() self.mean = mean self.std = std self.inplace = inplace def __call__(self, imgs): ''' x must be PIL.Image ''' return [F.normalize(img, self.mean, self.std, self.inplace) for img in imgs] class CenterCrop3D(object): def __init__(self, size): super().__init__() self.size = size def __call__(self, imgs): ''' x must be PIL.Image ''' return [F.center_crop(img, self.size) for img in imgs] class FrequencyMasking(object): def __init__(self, freq_mask_param: int, iid_masks: bool = False): super().__init__() self.masking = torchaudio.transforms.FrequencyMasking(freq_mask_param, iid_masks) def __call__(self, item): if 'cond_image' in item.keys(): batched_spec = torch.stack( [torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0 )[:, None] # (2, 1, H, W) masked = self.masking(batched_spec).numpy() item['image'] = masked[0, 0] item['cond_image'] = masked[1, 0] elif 'image' in item.keys(): inp = torch.tensor(item['image']) item['image'] = self.masking(inp).numpy() else: raise NotImplementedError() return item class TimeMasking(object): def __init__(self, time_mask_param: int, iid_masks: bool = False): super().__init__() self.masking = torchaudio.transforms.TimeMasking(time_mask_param, iid_masks) def __call__(self, item): if 'cond_image' in item.keys(): batched_spec = torch.stack( [torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0 )[:, None] # (2, 1, H, W) masked = self.masking(batched_spec).numpy() item['image'] = masked[0, 0] item['cond_image'] = masked[1, 0] elif 'image' in item.keys(): inp = torch.tensor(item['image']) item['image'] = self.masking(inp).numpy() else: raise NotImplementedError() return item class PitchShift(nn.Module): def __init__(self, up=12, down=-12, sample_rate=SR): super().__init__() self.range = (down, up) self.sr = sample_rate def forward(self, x): assert len(x.shape) == 2 x = x[:, None, :] ratio = float(random.randint(self.range[0], self.range[1]) / 12.) shifted = pitch_shift(x, ratio, self.sr) return shifted.squeeze() class MelSpectrogram(object): def __init__(self, sr, nfft, fmin, fmax, nmels, hoplen, spec_power, inverse=False): self.sr = sr self.nfft = nfft self.fmin = fmin self.fmax = fmax self.nmels = nmels self.hoplen = hoplen self.spec_power = spec_power self.inverse = inverse self.mel_basis = librosa.filters.mel(sr=sr, n_fft=nfft, fmin=fmin, fmax=fmax, n_mels=nmels) def __call__(self, x): x = x.numpy() if self.inverse: spec = librosa.feature.inverse.mel_to_stft( x, sr=self.sr, n_fft=self.nfft, fmin=self.fmin, fmax=self.fmax, power=self.spec_power ) wav = librosa.griffinlim(spec, hop_length=self.hoplen) return torch.FloatTensor(wav) else: spec = np.abs(librosa.stft(x, n_fft=self.nfft, hop_length=self.hoplen)) ** self.spec_power mel_spec = np.dot(self.mel_basis, spec) return torch.FloatTensor(mel_spec) class SpectrogramTorchAudio(object): def __init__(self, nfft, hoplen, spec_power, inverse=False): self.nfft = nfft self.hoplen = hoplen self.spec_power = spec_power self.inverse = inverse self.spec_trans = torchaudio.transforms.Spectrogram( n_fft=self.nfft, hop_length=self.hoplen, power=self.spec_power, ) self.inv_spec_trans = torchaudio.transforms.GriffinLim( n_fft=self.nfft, hop_length=self.hoplen, power=self.spec_power, ) def __call__(self, x): if self.inverse: wav = self.inv_spec_trans(x) return wav else: spec = torch.abs(self.spec_trans(x)) return spec class MelScaleTorchAudio(object): def __init__(self, sr, stft, fmin, fmax, nmels, inverse=False): self.sr = sr self.stft = stft self.fmin = fmin self.fmax = fmax self.nmels = nmels self.inverse = inverse self.mel_trans = torchaudio.transforms.MelScale( n_mels=self.nmels, sample_rate=self.sr, f_min=self.fmin, f_max=self.fmax, n_stft=self.stft, norm='slaney' ) self.inv_mel_trans = torchaudio.transforms.InverseMelScale( n_mels=self.nmels, sample_rate=self.sr, f_min=self.fmin, f_max=self.fmax, n_stft=self.stft, norm='slaney' ) def __call__(self, x): if self.inverse: spec = self.inv_mel_trans(x) return spec else: mel_spec = self.mel_trans(x) return mel_spec class Padding(object): def __init__(self, target_len, inverse=False): self.target_len=int(target_len) self.inverse = inverse def __call__(self, x): if self.inverse: return x else: x = x.squeeze() if x.shape[0] < self.target_len: pad = torch.zeros((self.target_len,), dtype=x.dtype, device=x.device) pad[:x.shape[0]] = x x = pad elif x.shape[0] > self.target_len: raise NotImplementedError() return x class MakeMono(object): def __init__(self, inverse=False): self.inverse = inverse def __call__(self, x): if self.inverse: return x else: x = x.squeeze() if len(x.shape) == 1: return torch.FloatTensor(x) elif len(x.shape) == 2: target_dim = int(torch.argmin(torch.tensor(x.shape))) return torch.mean(x, dim=target_dim) else: raise NotImplementedError class LowerThresh(object): def __init__(self, min_val, inverse=False): self.min_val = torch.tensor(min_val) self.inverse = inverse def __call__(self, x): if self.inverse: return x else: return torch.maximum(self.min_val, x) class Add(object): def __init__(self, val, inverse=False): self.inverse = inverse self.val = val def __call__(self, x): if self.inverse: return x - self.val else: return x + self.val class Subtract(Add): def __init__(self, val, inverse=False): self.inverse = inverse self.val = val def __call__(self, x): if self.inverse: return x + self.val else: return x - self.val class Multiply(object): def __init__(self, val, inverse=False) -> None: self.val = val self.inverse = inverse def __call__(self, x): if self.inverse: return x / self.val else: return x * self.val class Divide(Multiply): def __init__(self, val, inverse=False): self.inverse = inverse self.val = val def __call__(self, x): if self.inverse: return x * self.val else: return x / self.val class Log10(object): def __init__(self, inverse=False): self.inverse = inverse def __call__(self, x): if self.inverse: return 10 ** x else: return torch.log10(x) class Clip(object): def __init__(self, min_val, max_val, inverse=False): self.min_val = min_val self.max_val = max_val self.inverse = inverse def __call__(self, x): if self.inverse: return x else: return torch.clip(x, self.min_val, self.max_val) class TrimSpec(object): def __init__(self, max_len, inverse=False): self.max_len = max_len self.inverse = inverse def __call__(self, x): if self.inverse: return x else: return x[:, :self.max_len] class MaxNorm(object): def __init__(self, inverse=False): self.inverse = inverse self.eps = 1e-10 def __call__(self, x): if self.inverse: return x else: return x / (x.max() + self.eps) class NormalizeAudio(object): def __init__(self, inverse=False, desired_rms=0.1, eps=1e-4): self.inverse = inverse self.desired_rms = desired_rms self.eps = torch.tensor(eps) def __call__(self, x): if self.inverse: return x else: rms = torch.maximum(self.eps, torch.sqrt(torch.mean(x**2))) x = x * (self.desired_rms / rms) x[x > 1.] = 1. x[x < -1.] = -1. return x class RandomNormalizeAudio(object): def __init__(self, inverse=False, rms_range=[0.05, 0.2], eps=1e-4): self.inverse = inverse self.rms_low, self.rms_high = rms_range self.eps = torch.tensor(eps) def __call__(self, x): if self.inverse: return x else: rms = torch.maximum(self.eps, torch.sqrt(torch.mean(x**2))) desired_rms = (torch.rand(1) * (self.rms_high - self.rms_low)) + self.rms_low x = x * (desired_rms / rms) x[x > 1.] = 1. x[x < -1.] = -1. return x class MakeDouble(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.to(torch.double) class MakeFloat(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.to(torch.float) class Wave2Spectrogram(nn.Module): def __init__(self, mel_num, spec_crop_len): super().__init__() self.trans = transforms.Compose([ LowerThresh(1e-5), Log10(), Multiply(20), Subtract(20), Add(100), Divide(100), Clip(0, 1.0), TrimSpec(173), transforms.CenterCrop((mel_num, spec_crop_len)) ]) def forward(self, x): return self.trans(x) TRANSFORMS = transforms.Compose([ SpectrogramTorchAudio(nfft=1024, hoplen=1024//4, spec_power=1), MelScaleTorchAudio(sr=22050, stft=513, fmin=125, fmax=7600, nmels=80), LowerThresh(1e-5), Log10(), Multiply(20), Subtract(20), Add(100), Divide(100), Clip(0, 1.0), ]) def get_spectrogram_torch(audio_path, save_dir, length, save_results=True): wav, _ = soundfile.read(audio_path) wav = torch.FloatTensor(wav) y = torch.zeros(length) if wav.shape[0] < length: y[:len(wav)] = wav else: y = wav[:length] mel_spec = TRANSFORMS(y).numpy() y = y.numpy() if save_results: os.makedirs(save_dir, exist_ok=True) audio_name = os.path.basename(audio_path).split('.')[0] np.save(os.path.join(save_dir, audio_name + '_mel.npy'), mel_spec) np.save(os.path.join(save_dir, audio_name + '_audio.npy'), y) else: return y, mel_spec