Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Jialian Wu from https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/visualizer.py | |
import torch | |
from detectron2.engine.defaults import DefaultPredictor | |
from detectron2.utils.visualizer import ColorMode, Visualizer | |
class BatchDefaultPredictor(DefaultPredictor): | |
def __call__(self, original_images): | |
""" | |
Args: | |
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
Returns: | |
predictions (dict): | |
the output of the model for one image only. | |
See :doc:`/tutorials/models` for details about the format. | |
""" | |
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 | |
# Apply pre-processing to image. | |
height, width = original_images.shape[1:3] | |
batch_inputs = [] | |
for original_image in original_images: | |
image = self.aug.get_transform(original_image).apply_image(original_image) | |
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) | |
inputs = {"image": image, "height": height, "width": width} | |
batch_inputs.append(inputs) | |
predictions = self.model(batch_inputs)[0] | |
return predictions | |
class Visualizer_GRiT(Visualizer): | |
def __init__(self, image, instance_mode=None): | |
super().__init__(image, instance_mode=instance_mode) | |
def draw_instance_predictions(self, predictions): | |
boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None | |
scores = predictions.scores if predictions.has("scores") else None | |
classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None | |
object_description = predictions.pred_object_descriptions.data | |
# uncomment to output scores in visualized images | |
# object_description = [c + '|' + str(round(s.item(), 1)) for c, s in zip(object_description, scores)] | |
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): | |
colors = [ | |
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes | |
] | |
alpha = 0.8 | |
else: | |
colors = None | |
alpha = 0.5 | |
if self._instance_mode == ColorMode.IMAGE_BW: | |
self.output.reset_image( | |
self._create_grayscale_image( | |
(predictions.pred_masks.any(dim=0) > 0).numpy() | |
if predictions.has("pred_masks") | |
else None | |
) | |
) | |
alpha = 0.3 | |
self.overlay_instances( | |
masks=None, | |
boxes=boxes, | |
labels=object_description, | |
keypoints=None, | |
assigned_colors=colors, | |
alpha=alpha, | |
) | |
return self.output | |
class VisualizationDemo(object): | |
def __init__(self, cfg, instance_mode=ColorMode.IMAGE): | |
self.cpu_device = torch.device("cpu") | |
self.instance_mode = instance_mode | |
self.predictor = DefaultPredictor(cfg) | |
def run_on_image(self, image): | |
predictions = self.predictor(image) | |
# Convert image from OpenCV BGR format to Matplotlib RGB format. | |
image = image[:, :, ::-1] | |
visualizer = Visualizer_GRiT(image, instance_mode=self.instance_mode) | |
instances = predictions["instances"].to(self.cpu_device) | |
vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
return predictions, vis_output |