Spaces:
Runtime error
Runtime error
''' | |
* Copyright (c) 2022, salesforce.com, inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: BSD-3-Clause | |
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
* By Junnan Li | |
* Based on timm code base | |
* https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
''' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
from timm.models.vision_transformer import _cfg, PatchEmbed | |
from timm.models.registry import register_model | |
from timm.models.layers import trunc_normal_, DropPath | |
from timm.models.helpers import named_apply, adapt_input_conv | |
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.attn_gradients = None | |
self.attention_map = None | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def save_attention_map(self, attention_map): | |
self.attention_map = attention_map | |
def get_attention_map(self): | |
return self.attention_map | |
def forward(self, x, register_hook=False): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
if register_hook: | |
self.save_attention_map(attn) | |
attn.register_hook(self.save_attn_gradients) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if use_grad_checkpointing: | |
self.attn = checkpoint_wrapper(self.attn) | |
self.mlp = checkpoint_wrapper(self.mlp) | |
def forward(self, x, register_hook=False): | |
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - | |
https://arxiv.org/abs/2010.11929 | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, | |
use_grad_checkpointing=False, ckpt_layer=0): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
qk_scale (float): override default qk scale of head_dim ** -0.5 if set | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
norm_layer: (nn.Module): normalization layer | |
""" | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) | |
) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward(self, x, register_blk=-1): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embed[:,:x.size(1),:] | |
x = self.pos_drop(x) | |
for i,blk in enumerate(self.blocks): | |
x = blk(x, register_blk==i) | |
x = self.norm(x) | |
return x | |
def load_pretrained(self, checkpoint_path, prefix=''): | |
_load_weights(self, checkpoint_path, prefix) | |
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): | |
""" Load weights from .npz checkpoints for official Google Brain Flax implementation | |
""" | |
import numpy as np | |
def _n2p(w, t=True): | |
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: | |
w = w.flatten() | |
if t: | |
if w.ndim == 4: | |
w = w.transpose([3, 2, 0, 1]) | |
elif w.ndim == 3: | |
w = w.transpose([2, 0, 1]) | |
elif w.ndim == 2: | |
w = w.transpose([1, 0]) | |
return torch.from_numpy(w) | |
w = np.load(checkpoint_path) | |
if not prefix and 'opt/target/embedding/kernel' in w: | |
prefix = 'opt/target/' | |
if hasattr(model.patch_embed, 'backbone'): | |
# hybrid | |
backbone = model.patch_embed.backbone | |
stem_only = not hasattr(backbone, 'stem') | |
stem = backbone if stem_only else backbone.stem | |
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) | |
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) | |
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) | |
if not stem_only: | |
for i, stage in enumerate(backbone.stages): | |
for j, block in enumerate(stage.blocks): | |
bp = f'{prefix}block{i + 1}/unit{j + 1}/' | |
for r in range(3): | |
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) | |
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) | |
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) | |
if block.downsample is not None: | |
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) | |
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) | |
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) | |
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) | |
else: | |
embed_conv_w = adapt_input_conv( | |
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) | |
model.patch_embed.proj.weight.copy_(embed_conv_w) | |
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) | |
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) | |
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) | |
if pos_embed_w.shape != model.pos_embed.shape: | |
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights | |
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) | |
model.pos_embed.copy_(pos_embed_w) | |
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) | |
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) | |
for i, block in enumerate(model.blocks.children()): | |
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' | |
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' | |
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) | |
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) | |
block.attn.qkv.weight.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) | |
block.attn.qkv.bias.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) | |
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) | |
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) | |
for r in range(2): | |
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) | |
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) | |
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) | |
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) | |
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): | |
# interpolate position embedding | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_patches = visual_encoder.patch_embed.num_patches | |
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches ** 0.5) | |
if orig_size!=new_size: | |
# class_token and dist_token are kept unchanged | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) | |
return new_pos_embed | |
else: | |
return pos_embed_checkpoint |