import os os.system( "python -m pip install 'git+https://github.com/facebookresearch/detectron2.git@v0.6'" ) import numpy as np import random import torch import torchvision.transforms as transforms from PIL import Image from models.tag2text import tag2text_caption from util import * import gradio as gr from chatbot_lv import * from load_internvideo import * device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') from simplet5 import SimpleT5 from models.grit_model import DenseCaptioning bot = ConversationBot() image_size = 384 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([transforms.ToPILImage(),transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize]) # define model model = tag2text_caption(pretrained="pretrained_models/tag2text_swin_14m.pth", image_size=image_size, vit='swin_b' ) model.eval() model = model.to(device) print("[INFO] initialize caption model success!") model_T5 = SimpleT5() if torch.cuda.is_available(): model_T5.load_model( "t5", "./pretrained_models/flan-t5-large-finetuned-openai-summarize_from_feedback", use_gpu=True) else: model_T5.load_model( "t5", "./pretrained_models/flan-t5-large-finetuned-openai-summarize_from_feedback", use_gpu=False) print("[INFO] initialize summarize model success!") # action recognition intern_action = load_intern_action(device) trans_action = transform_action() topil = T.ToPILImage() print("[INFO] initialize InternVideo model success!") dense_caption_model = DenseCaptioning(device) dense_caption_model.initialize_model() print("[INFO] initialize dense caption model success!") def inference(video_path, input_tag, progress=gr.Progress()): video_data = loadvideo_decord_origin(video_path) prediction_list, frame_caption_list, dense_caption_list, tag_1, tag_2 = [],[],[],set(),set() # split video every 60s for start in progress.tqdm(range(0,len(video_data),60)): data = video_data[start:start+60,...] # InternVideo action_index = np.linspace(0, len(data)-1, 8).astype(int) tmp,tmpa = [],[] for i,img in enumerate(data): tmp.append(transform(img).to(device).unsqueeze(0)) if i in action_index: tmpa.append(topil(img)) action_tensor = trans_action(tmpa) TC, H, W = action_tensor.shape action_tensor = action_tensor.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4).to(device) with torch.no_grad(): prediction = intern_action(action_tensor) prediction = F.softmax(prediction, dim=1).flatten() prediction = kinetics_classnames[str(int(prediction.argmax()))] prediction_list.append(prediction) # dense caption dense_caption = [] dense_index = np.arange(0, len(data)-1, 5) original_images = data[dense_index,:,:,::-1] with torch.no_grad(): for idx,original_image in zip(dense_index,original_images): dense_caption.append((idx+start,dense_caption_model.run_caption_tensor(original_image))) # Video Caption image = torch.cat(tmp).to(device) model.threshold = 0.68 if input_tag == '' or input_tag == 'none' or input_tag == 'None': input_tag_list = None else: input_tag_list = [] input_tag_list.append(input_tag.replace(',',' | ')) with torch.no_grad(): caption, tag_predict = model.generate(image,tag_input = input_tag_list,max_length = 50, return_tag_predict = True) tag_1.update(tag_predict) tag_2 = ['none'] #print(frame_caption, dense_caption, synth_caption) frame_caption_list.extend(caption) dense_caption_list.extend(dense_caption) synth_caption = model_T5.predict('. '.join(caption)) frame_caption = ' '.join([f"Second {i+1}:{j}.\n" for i,j in enumerate(frame_caption_list)]) dense_caption = ' '.join([f"Second {i+1} : {j}.\n" for (i,j) in dense_caption_list]) del data, action_tensor, original_image, image,tmp,tmpa torch.cuda.empty_cache() torch.cuda.ipc_collect() return ' | '.join(tag_1),' | '.join(tag_2), frame_caption, dense_caption, synth_caption[0], gr.update(interactive = True), ','.join(set(prediction_list)) def set_example_video(example: list) -> dict: return gr.Video.update(value=example[0]) with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo: gr.Markdown("

Ask Anything with GPT

") gr.Markdown( """ Ask-Anything is a multifunctional video question answering tool that combines the functions of Action Recognition, Visual Captioning and ChatGPT. Our solution generates dense, descriptive captions for any object and action in a video, offering a range of language styles to suit different user preferences. It supports users to have conversations in different lengths, emotions, authenticity of language.

""" ) with gr.Row(): with gr.Column(): input_video_path = gr.inputs.Video(label="Input Video") input_tag = gr.Textbox(lines=1, label="User Prompt (Optional, Enter with commas)",visible=False) with gr.Row(): with gr.Column(sclae=0.3, min_width=0): caption = gr.Button("✍ Upload") chat_video = gr.Button(" 🎥 Let's Chat! ", interactive=False) with gr.Column(scale=0.7, min_width=0): loadinglabel = gr.Label(label="State") with gr.Column(): openai_api_key_textbox = gr.Textbox( value=os.environ["OPENAI_API_KEY"], placeholder="Paste your OpenAI API key here to start (sk-...)", show_label=False, lines=1, type="password", ) chatbot = gr.Chatbot(elem_id="chatbot", label="Chat_with_GPT") state = gr.State([]) user_tag_output = gr.State("") image_caption_output = gr.State("") video_caption_output = gr.State("") model_tag_output = gr.State("") dense_caption_output = gr.State("") with gr.Row(visible=False) as input_raws: with gr.Column(scale=0.8): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) with gr.Column(scale=0.10, min_width=0): run = gr.Button("🏃‍♂️Run") with gr.Column(scale=0.10, min_width=0): clear = gr.Button("🔄Clear️") with gr.Row(): example_videos = gr.Dataset(components=[input_video_path], samples=[['images/yoga.mp4'], ['images/making_cake.mp4'], ['images/playing_guitar.mp4']]) example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components) caption.click(bot.memory.clear) caption.click(lambda: gr.update(interactive = False), None, chat_video) caption.click(lambda: [], None, chatbot) caption.click(lambda: [], None, state) caption.click(inference,[input_video_path,input_tag],[model_tag_output, user_tag_output, image_caption_output, dense_caption_output,video_caption_output, chat_video, loadinglabel]) chat_video.click(bot.init_agent, [openai_api_key_textbox, image_caption_output, dense_caption_output, video_caption_output, model_tag_output, state], [input_raws,chatbot, state, openai_api_key_textbox]) txt.submit(bot.run_text, [txt, state], [chatbot, state]) txt.submit(lambda: "", None, txt) run.click(bot.run_text, [txt, state], [chatbot, state]) run.click(lambda: "", None, txt) clear.click(bot.memory.clear) clear.click(lambda: [], None, chatbot) clear.click(lambda: [], None, state) demo.launch(server_name="0.0.0.0",enable_queue=True,)#share=True)