Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from transformers import Wav2Vec2Processor | |
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
Wav2Vec2Model, | |
Wav2Vec2PreTrainedModel, | |
) | |
import os | |
import librosa | |
import numpy as np | |
class RegressionHead(nn.Module): | |
r"""Classification head.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class EmotionModel(Wav2Vec2PreTrainedModel): | |
r"""Speech emotion classifier.""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.classifier = RegressionHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_values, | |
): | |
outputs = self.wav2vec2(input_values) | |
hidden_states = outputs[0] | |
hidden_states = torch.mean(hidden_states, dim=1) | |
logits = self.classifier(hidden_states) | |
return hidden_states, logits | |
# load model from hub | |
device = 'cuda' if torch.cuda.is_available() else "cpu" | |
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = EmotionModel.from_pretrained(model_name).to(device) | |
def process_func( | |
x: np.ndarray, | |
sampling_rate: int, | |
embeddings: bool = False, | |
) -> np.ndarray: | |
r"""Predict emotions or extract embeddings from raw audio signal.""" | |
# run through processor to normalize signal | |
# always returns a batch, so we just get the first entry | |
# then we put it on the device | |
y = processor(x, sampling_rate=sampling_rate) | |
y = y['input_values'][0] | |
y = torch.from_numpy(y).to(device) | |
# run through model | |
with torch.no_grad(): | |
y = model(y)[0 if embeddings else 1] | |
# convert to numpy | |
y = y.detach().cpu().numpy() | |
return y | |
# | |
# | |
# def disp(rootpath, wavname): | |
# wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000) | |
# display(ipd.Audio(wav, rate=sr)) | |
rootpath = "dataset/nene" | |
embs = [] | |
wavnames = [] | |
def extract_dir(path): | |
rootpath = path | |
for idx, wavname in enumerate(os.listdir(rootpath)): | |
wav, sr =librosa.load(f"{rootpath}/{wavname}", 16000) | |
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True) | |
embs.append(emb) | |
wavnames.append(wavname) | |
np.save(f"{rootpath}/{wavname}.emo.npy", emb.squeeze(0)) | |
print(idx, wavname) | |
def extract_wav(path): | |
wav, sr = librosa.load(path, 16000) | |
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True) | |
return emb | |
if __name__ == '__main__': | |
for spk in ["serena", "koni", "nyaru","shanoa", "mana"]: | |
extract_dir(f"dataset/{spk}") | |