Spaces:
Running
Running
docker 环境部署
Browse files- .gitignore +5 -0
- Dockerfile +30 -0
- app.py +89 -0
- table.jpg +0 -0
- word_1.jpg +0 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.vscode
|
3 |
+
.DS_Store
|
4 |
+
.coverage
|
5 |
+
output
|
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/gaunernst/layoutlm-docvqa-paddleocr/blob/main/Dockerfile
|
2 |
+
FROM python:3.10
|
3 |
+
|
4 |
+
ENV CUDA_VISIBLE_DEVICES=-1
|
5 |
+
ARG PIP_NO_CACHE_DIR=1
|
6 |
+
|
7 |
+
# libssl1.1 for PaddlePaddle
|
8 |
+
RUN wget http://security.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2.20_amd64.deb \
|
9 |
+
&& dpkg -i libssl1.1_1.1.1f-1ubuntu2.20_amd64.deb \
|
10 |
+
&& rm libssl1.1_1.1.1f-1ubuntu2.20_amd64.deb
|
11 |
+
|
12 |
+
RUN pip install torch==2.1.1 -i https://download.pytorch.org/whl/cpu
|
13 |
+
RUN pip install paddlepaddle==2.5.1 -i https://mirror.baidu.com/pypi/simple
|
14 |
+
RUN pip install transformers gradio Pillow fastapi
|
15 |
+
RUN pip install paddleocr==2.7.0.3 \
|
16 |
+
&& pip uninstall -y opencv-python opencv-contrib-python \
|
17 |
+
&& pip install opencv-python-headless
|
18 |
+
|
19 |
+
RUN useradd -m -u 1000 user
|
20 |
+
USER user
|
21 |
+
ENV HOME=/home/user
|
22 |
+
WORKDIR $HOME/app
|
23 |
+
RUN mkdir output
|
24 |
+
COPY --chown=user app.py $HOME/app
|
25 |
+
COPY --chown=user table.jpg $HOME/app
|
26 |
+
COPY --chown=user word_1.jpg $HOME/app
|
27 |
+
RUN paddleocr --image_dir ./word_1.jpg --use_angle_cls true --use_gpu false --lang ch
|
28 |
+
RUN paddleocr --image_dir ./table.jpg --type=structure --table=true --lang ch
|
29 |
+
|
30 |
+
CMD ["python", "-u", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
from fastapi.staticfiles import StaticFiles
|
3 |
+
import hashlib
|
4 |
+
from enum import Enum
|
5 |
+
from fastapi import FastAPI, UploadFile, File
|
6 |
+
from paddleocr import PaddleOCR, PPStructure, save_structure_res
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
use_gpu = False
|
13 |
+
output_dir = 'output'
|
14 |
+
|
15 |
+
class LangEnum(str, Enum):
|
16 |
+
ch = "ch"
|
17 |
+
en = "en"
|
18 |
+
|
19 |
+
# cache with ocr
|
20 |
+
ocr_cache = {}
|
21 |
+
|
22 |
+
# get ocr ins
|
23 |
+
def get_ocr(lang, use_gpu=False):
|
24 |
+
if not ocr_cache.get(lang):
|
25 |
+
ocr_cache[lang] = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=use_gpu)
|
26 |
+
|
27 |
+
return ocr_cache.get(lang)
|
28 |
+
|
29 |
+
|
30 |
+
@app.post("/ocr")
|
31 |
+
async def create_upload_file(
|
32 |
+
file: UploadFile = File(...),
|
33 |
+
lang: LangEnum = LangEnum.ch,
|
34 |
+
# use_gpu: bool = False
|
35 |
+
):
|
36 |
+
contents = await file.read()
|
37 |
+
image = Image.open(io.BytesIO(contents))
|
38 |
+
ocr = get_ocr(lang=lang, use_gpu=use_gpu)
|
39 |
+
img2np = np.array(image)
|
40 |
+
result = ocr.ocr(img2np, cls=True)[0]
|
41 |
+
|
42 |
+
boxes = [line[0] for line in result]
|
43 |
+
txts = [line[1][0] for line in result]
|
44 |
+
scores = [line[1][1] for line in result]
|
45 |
+
|
46 |
+
# 识别结果
|
47 |
+
final_result = [dict(boxes=box, txt=txt, score=score) for box, txt, score in zip(boxes, txts, scores)]
|
48 |
+
return final_result
|
49 |
+
|
50 |
+
|
51 |
+
@app.post("/ocr_table")
|
52 |
+
async def create_upload_file(
|
53 |
+
file: UploadFile = File(...),
|
54 |
+
lang: LangEnum = LangEnum.ch,
|
55 |
+
# use_gpu: bool = False
|
56 |
+
):
|
57 |
+
table_engine = PPStructure(show_log=True, table=True, lang=lang)
|
58 |
+
|
59 |
+
contents = await file.read()
|
60 |
+
# 计算文件内容的哈希值
|
61 |
+
file_hash = hashlib.sha256(contents).hexdigest()
|
62 |
+
|
63 |
+
image = Image.open(io.BytesIO(contents))
|
64 |
+
img2np = np.array(image)
|
65 |
+
result = table_engine(img2np)
|
66 |
+
|
67 |
+
save_structure_res(result, output_dir, f'{file_hash}')
|
68 |
+
|
69 |
+
htmls = []
|
70 |
+
types = []
|
71 |
+
bboxes = []
|
72 |
+
|
73 |
+
for item in result:
|
74 |
+
item_res = item.get('res', {})
|
75 |
+
htmls.append(item_res.get('html', ''))
|
76 |
+
types.append(item.get('type', ''))
|
77 |
+
bboxes.append(item.get('bbox', ''))
|
78 |
+
|
79 |
+
return {
|
80 |
+
'htmls': htmls,
|
81 |
+
'hash': file_hash,
|
82 |
+
'bboxes': bboxes,
|
83 |
+
'types': types,
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == '__main__':
|
88 |
+
app.mount("/output", StaticFiles(directory="output", follow_symlink=True, html=True), name="output")
|
89 |
+
uvicorn.run(app=app, port=7860)
|
table.jpg
ADDED
word_1.jpg
ADDED