File size: 1,402 Bytes
826e275 7a75a15 826e275 7a75a15 7b34e37 826e275 7a75a15 826e275 7a75a15 826e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
"""
The Streamlit app for the project demo.
In the demo, the user can write a prompt
and the model will generate a response using the grouped sampling algorithm.
"""
import streamlit as st
from hanlde_form_submit import on_form_submit
from on_server_start import main as on_server_start_main
AVAILABLE_MODEL_NAMES = "https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads"
with st.form("request_form"):
selected_model_name: str = st.text_input(
label="Model name",
value="gpt2",
help=f"The name of the model to use."
f" Must be a model from this list:"
f" {AVAILABLE_MODEL_NAMES}"
)
output_length: int = st.number_input(
label="Output Length in tokens",
min_value=1,
max_value=4096,
value=100,
help="The length of the output text in tokens (word pieces)."
)
submitted_prompt: str = st.text_area(
label="Input for the model",
help="Enter the prompt for the model. The model will generate a response based on this prompt.",
max_chars=16384,
)
submitted: bool = st.form_submit_button(
label="Generate",
help="Generate the output text.",
disabled=False
)
if submitted:
output = on_form_submit(selected_model_name, output_length, submitted_prompt)
st.write(f"Generated text: {output}")
|