|
from typing import Generator, Set, Union, List |
|
|
|
import requests |
|
from bs4 import BeautifulSoup, Tag, NavigableString, PageElement |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
|
SUPPORTED_MODEL_NAME_PAGES_FORMAT = "https://huggingface.co/models?pipeline_tag=text-generation&library=pytorch" |
|
MAX_WORKERS = 10 |
|
BLACKLISTED_MODEL_NAMES = {"ykilcher/gpt-4chan"} |
|
MIN_NUMBER_OF_DOWNLOADS = 100 |
|
MIN_NUMBER_OF_LIKES = 20 |
|
|
|
|
|
def get_model_name(model_card: Tag) -> str: |
|
h4_class = "text-md truncate font-mono text-black dark:group-hover:text-yellow-500 group-hover:text-indigo-600" |
|
h4_tag = model_card.find("h4", class_=h4_class) |
|
return h4_tag.text |
|
|
|
|
|
def is_a_number(s: PageElement) -> bool: |
|
s = s.text.strip().lower().replace("k", "").replace("m", "").replace(",", "").replace(".", "").replace("b", "") |
|
try: |
|
float(s) |
|
return True |
|
except ValueError: |
|
return False |
|
|
|
|
|
def get_numeric_contents(model_card): |
|
div: Union[Tag | NavigableString] = model_card.find( |
|
"div", |
|
class_="mr-1 flex items-center overflow-hidden whitespace-nowrap text-sm leading-tight text-gray-400", |
|
recursive=True |
|
) |
|
contents: List[PageElement] = div.contents |
|
contents_without_tags: List[PageElement] = [content for content in contents if not isinstance(content, Tag)] |
|
number_contents: List[PageElement] = [content for content in contents_without_tags if is_a_number(content)] |
|
return number_contents |
|
|
|
|
|
def convert_to_int(element: PageElement) -> int: |
|
element_str = element.text.strip().lower() |
|
if element_str.endswith("k"): |
|
return int(float(element_str[:-1]) * 1_000) |
|
elif element_str.endswith("m"): |
|
return int(float(element_str[:-1]) * 1_000_000) |
|
elif element_str.endswith("b"): |
|
return int(float(element_str[:-1]) * 1_000_000_000) |
|
else: |
|
return int(element_str) |
|
|
|
|
|
def get_page(page_index: int): |
|
curr_page_url = f"{SUPPORTED_MODEL_NAME_PAGES_FORMAT}&p={page_index}" |
|
response = requests.get(curr_page_url) |
|
if response.status_code == 200: |
|
soup = BeautifulSoup(response.content, "html.parser") |
|
return soup |
|
return None |
|
|
|
|
|
def card_filter(model_card: Tag, model_name: str) -> bool: |
|
if model_name in BLACKLISTED_MODEL_NAMES: |
|
return False |
|
numeric_contents = get_numeric_contents(model_card) |
|
if len(numeric_contents) < 2: |
|
|
|
|
|
return False |
|
number_of_downloads = convert_to_int(numeric_contents[0]) |
|
if number_of_downloads < MIN_NUMBER_OF_DOWNLOADS: |
|
return False |
|
number_of_likes = convert_to_int(numeric_contents[1]) |
|
if number_of_likes < MIN_NUMBER_OF_LIKES: |
|
return False |
|
return True |
|
|
|
|
|
def get_model_names(soup: BeautifulSoup): |
|
model_cards: List[Tag] = soup.find_all("article", class_="overview-card-wrapper group", recursive=True) |
|
for model_card in model_cards: |
|
model_name = get_model_name(model_card) |
|
if card_filter(model_card, model_name): |
|
yield model_name |
|
|
|
|
|
def generate_supported_model_names() -> Generator[str, None, None]: |
|
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: |
|
future_to_index = {executor.submit(get_page, index): index for index in range(100)} |
|
for future in as_completed(future_to_index): |
|
soup = future.result() |
|
if soup: |
|
yield from get_model_names(soup) |
|
|
|
|
|
def get_supported_model_names() -> Set[str]: |
|
return set(generate_supported_model_names()) |
|
|
|
|
|
if __name__ == "__main__": |
|
supported_model_names = get_supported_model_names() |
|
print(f"Number of supported model names: {len(supported_model_names)}") |
|
print(f"Supported model names: {supported_model_names}") |
|
|