yonikremer's picture
stopped downloading the models when the servers start
cd990a6
raw
history blame
1.95 kB
"""
The Streamlit app for the project demo.
In the demo, the user can write a prompt
and the model will generate a response using the grouped sampling algorithm.
"""
import streamlit as st
from torch.cuda import CudaError
from available_models import AVAILABLE_MODELS
from hanlde_form_submit import on_form_submit
st.title("Grouped Sampling Demo")
with st.form("request_form"):
selected_model_name: str = st.selectbox(
label="Select a model",
options=AVAILABLE_MODELS,
help="opt-iml-max-30b generates better texts but is slower",
)
output_length: int = st.number_input(
label="Number of word pieces in the generated text, 1-4096 (default: 100)",
min_value=1,
max_value=4096,
value=100,
help="The length of the output text in tokens (word pieces)."
)
submitted_prompt: str = st.text_area(
label="Input for the model, It is highly recommended to write an English prompt.",
help="Enter the prompt for the model. The model will generate a response based on this prompt.",
value="Instruction: Answer in yes or no.\n"
"Question: Is this a prompt?\n"
"Answer: ",
max_chars=2048,
)
submitted: bool = st.form_submit_button(
label="Generate",
help="Generate the output text.",
disabled=False,
)
if submitted:
try:
output = on_form_submit(
selected_model_name,
output_length,
submitted_prompt,
)
except CudaError as e:
st.error("Out of memory. Please try a smaller model, shorter prompt, or a smaller output length.")
except (ValueError, TypeError, RuntimeError) as e:
st.error(e)
st.write(f"Generated text: {output}")
with open("user_instructions_hebrew.md", "r") as fh:
long_description = fh.read()
st.markdown(long_description)