|
from pydoc import describe
|
|
import gradio as gr
|
|
import torch
|
|
from omegaconf import OmegaConf
|
|
import sys
|
|
sys.path.append(".")
|
|
sys.path.append('./taming-transformers')
|
|
sys.path.append('./latent-diffusion')
|
|
from taming.models import vqgan
|
|
from ldm.util import instantiate_from_config
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
model_path_e = hf_hub_download(repo_id="multimodalart/compvis-latent-diffusion-text2img-large", filename="txt2img-f8-large.ckpt")
|
|
|
|
|
|
import argparse, os, sys, glob
|
|
import numpy as np
|
|
from PIL import Image
|
|
from einops import rearrange
|
|
from torchvision.utils import make_grid
|
|
import transformers
|
|
import gc
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
from open_clip import tokenizer
|
|
import open_clip
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cuda")
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0 and verbose:
|
|
print("missing keys:")
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print("unexpected keys:")
|
|
print(u)
|
|
|
|
model = model.half().cuda()
|
|
model.eval()
|
|
return model
|
|
|
|
def load_safety_model(clip_model):
|
|
"""load the safety model"""
|
|
import autokeras as ak
|
|
from tensorflow.keras.models import load_model
|
|
from os.path import expanduser
|
|
|
|
home = expanduser("~")
|
|
|
|
cache_folder = home + "/.cache/clip_retrieval/" + clip_model.replace("/", "_")
|
|
if clip_model == "ViT-L/14":
|
|
model_dir = cache_folder + "/clip_autokeras_binary_nsfw"
|
|
dim = 768
|
|
elif clip_model == "ViT-B/32":
|
|
model_dir = cache_folder + "/clip_autokeras_nsfw_b32"
|
|
dim = 512
|
|
else:
|
|
raise ValueError("Unknown clip model")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(cache_folder, exist_ok=True)
|
|
|
|
from urllib.request import urlretrieve
|
|
|
|
path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip"
|
|
if clip_model == "ViT-L/14":
|
|
url_model = "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip"
|
|
elif clip_model == "ViT-B/32":
|
|
url_model = (
|
|
"https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_nsfw_b32.zip"
|
|
)
|
|
else:
|
|
raise ValueError("Unknown model {}".format(clip_model))
|
|
urlretrieve(url_model, path_to_zip_file)
|
|
import zipfile
|
|
|
|
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref:
|
|
zip_ref.extractall(cache_folder)
|
|
|
|
loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS)
|
|
loaded_model.predict(np.random.rand(10 ** 3, dim).astype("float32"), batch_size=10 ** 3)
|
|
|
|
return loaded_model
|
|
|
|
def is_unsafe(safety_model, embeddings, threshold=1):
|
|
"""find unsafe embeddings"""
|
|
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0])
|
|
x = np.array([e[0] for e in nsfw_values])
|
|
return True if x > threshold else False
|
|
|
|
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
|
|
model = load_model_from_config(config,model_path_e)
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
model = model.to(device)
|
|
|
|
|
|
safety_model = load_safety_model("ViT-B/32")
|
|
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
|
|
|
|
def run(prompt, steps, width, height, images, scale):
|
|
opt = argparse.Namespace(
|
|
prompt = prompt,
|
|
outdir='latent-diffusion/outputs',
|
|
ddim_steps = int(steps),
|
|
ddim_eta = 0,
|
|
n_iter = 1,
|
|
W=int(width),
|
|
H=int(height),
|
|
n_samples=int(images),
|
|
scale=scale,
|
|
plms=True
|
|
)
|
|
|
|
if opt.plms:
|
|
opt.ddim_eta = 0
|
|
sampler = PLMSSampler(model)
|
|
else:
|
|
sampler = DDIMSampler(model)
|
|
|
|
os.makedirs(opt.outdir, exist_ok=True)
|
|
outpath = opt.outdir
|
|
|
|
prompt = opt.prompt
|
|
|
|
|
|
sample_path = os.path.join(outpath, "samples")
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
base_count = len(os.listdir(sample_path))
|
|
|
|
all_samples=list()
|
|
all_samples_images=list()
|
|
with torch.no_grad():
|
|
with torch.cuda.amp.autocast():
|
|
with model.ema_scope():
|
|
uc = None
|
|
if opt.scale > 0:
|
|
uc = model.get_learned_conditioning(opt.n_samples * [""])
|
|
for n in range(opt.n_iter):
|
|
c = model.get_learned_conditioning(opt.n_samples * [prompt])
|
|
shape = [4, opt.H//8, opt.W//8]
|
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
|
conditioning=c,
|
|
batch_size=opt.n_samples,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=opt.scale,
|
|
unconditional_conditioning=uc,
|
|
eta=opt.ddim_eta)
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
|
|
|
for x_sample in x_samples_ddim:
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
image_vector = Image.fromarray(x_sample.astype(np.uint8))
|
|
image_preprocess = preprocess(image_vector).unsqueeze(0)
|
|
with torch.no_grad():
|
|
image_features = clip_model.encode_image(image_preprocess)
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
query = image_features.cpu().detach().numpy().astype("float32")
|
|
unsafe = is_unsafe(safety_model,query,1)
|
|
if(not unsafe):
|
|
all_samples_images.append(image_vector)
|
|
else:
|
|
return(None,None,"Sorry, potential NSFW content was detected on your outputs by our NSFW detection model. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.")
|
|
|
|
base_count += 1
|
|
all_samples.append(x_samples_ddim)
|
|
|
|
|
|
|
|
grid = torch.stack(all_samples, 0)
|
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
|
grid = make_grid(grid, nrow=2)
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
|
|
return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None)
|
|
|
|
image = gr.outputs.Image(type="pil", label="Your result")
|
|
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
|
|
iface = gr.Interface(fn=run, inputs=[
|
|
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
|
|
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1),
|
|
gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256),
|
|
gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256),
|
|
gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4),
|
|
gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0),
|
|
|
|
],
|
|
outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")],
|
|
css=css,
|
|
title="Generate images from text with Latent Diffusion LAION-400M",
|
|
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
|
|
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>")
|
|
iface.launch(enable_queue=True) |