from pydoc import describe import gradio as gr import torch from omegaconf import OmegaConf import sys sys.path.append(".") sys.path.append('./taming-transformers') sys.path.append('./latent-diffusion') from taming.models import vqgan from ldm.util import instantiate_from_config from huggingface_hub import hf_hub_download model_path_e = hf_hub_download(repo_id="multimodalart/compvis-latent-diffusion-text2img-large", filename="txt2img-f8-large.ckpt") #@title Import stuff import argparse, os, sys, glob import numpy as np from PIL import Image from einops import rearrange from torchvision.utils import make_grid import transformers import gc from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from open_clip import tokenizer import open_clip def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cuda") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model = model.half().cuda() model.eval() return model def load_safety_model(clip_model): """load the safety model""" import autokeras as ak # pylint: disable=import-outside-toplevel from tensorflow.keras.models import load_model # pylint: disable=import-outside-toplevel from os.path import expanduser # pylint: disable=import-outside-toplevel home = expanduser("~") cache_folder = home + "/.cache/clip_retrieval/" + clip_model.replace("/", "_") if clip_model == "ViT-L/14": model_dir = cache_folder + "/clip_autokeras_binary_nsfw" dim = 768 elif clip_model == "ViT-B/32": model_dir = cache_folder + "/clip_autokeras_nsfw_b32" dim = 512 else: raise ValueError("Unknown clip model") if not os.path.exists(model_dir): os.makedirs(cache_folder, exist_ok=True) from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip" if clip_model == "ViT-L/14": url_model = "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip" elif clip_model == "ViT-B/32": url_model = ( "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_nsfw_b32.zip" ) else: raise ValueError("Unknown model {}".format(clip_model)) urlretrieve(url_model, path_to_zip_file) import zipfile # pylint: disable=import-outside-toplevel with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref: zip_ref.extractall(cache_folder) loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS) loaded_model.predict(np.random.rand(10 ** 3, dim).astype("float32"), batch_size=10 ** 3) return loaded_model def is_unsafe(safety_model, embeddings, threshold=1): """find unsafe embeddings""" nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0]) x = np.array([e[0] for e in nsfw_values]) return True if x > threshold else False config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml") model = load_model_from_config(config,model_path_e) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) #NSFW CLIP Filter safety_model = load_safety_model("ViT-B/32") clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai') def run(prompt, steps, width, height, images, scale): opt = argparse.Namespace( prompt = prompt, outdir='latent-diffusion/outputs', ddim_steps = int(steps), ddim_eta = 0, n_iter = 1, W=int(width), H=int(height), n_samples=int(images), scale=scale, plms=True ) if opt.plms: opt.ddim_eta = 0 sampler = PLMSSampler(model) else: sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir prompt = opt.prompt sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) all_samples=list() all_samples_images=list() with torch.no_grad(): with torch.cuda.amp.autocast(): with model.ema_scope(): uc = None if opt.scale > 0: uc = model.get_learned_conditioning(opt.n_samples * [""]) for n in range(opt.n_iter): c = model.get_learned_conditioning(opt.n_samples * [prompt]) shape = [4, opt.H//8, opt.W//8] samples_ddim, _ = sampler.sample(S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') image_vector = Image.fromarray(x_sample.astype(np.uint8)) image_preprocess = preprocess(image_vector).unsqueeze(0) with torch.no_grad(): image_features = clip_model.encode_image(image_preprocess) image_features /= image_features.norm(dim=-1, keepdim=True) query = image_features.cpu().detach().numpy().astype("float32") unsafe = is_unsafe(safety_model,query,1) if(not unsafe): all_samples_images.append(image_vector) else: return(None,None,"Sorry, potential NSFW content was detected on your outputs by our NSFW detection model. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.") #Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png")) base_count += 1 all_samples.append(x_samples_ddim) # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=2) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png')) return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None) image = gr.outputs.Image(type="pil", label="Your result") css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}" iface = gr.Interface(fn=run, inputs=[ gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"), gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1), gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256), gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256), gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4), gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0), #gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1), ], outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")], css=css, title="Generate images from text with Latent Diffusion LAION-400M", description="