import gradio as gr from pymongo import MongoClient import pandas as pd import os secret_key = os.getenv('huggingface_key') print(f"Secret Key: {secret_key}") client = MongoClient('mongodb://localhost:27017/') db = client['EgitimDatabase'] collection = db['test'] def train_model(filtered_data): model_response = { 'status': 'success', 'message': 'Model trained successfully!', 'accuracy': 0.95, # Örnek doğruluk değeri 'data_size': len(filtered_data) } return model_response # Gradio uygulaması için fonksiyon def train_model_gradio(title,keywords,subheadings): query = { 'title': {'$in': title}, 'category': {'$in': keywords.split(',')}, 'subheadings': {'$in': subheadings.split(',')} } filtered_data = list(collection.find(query)) response = train_model(filtered_data) return response # Gradio arayüzü iface = gr.Interface( fn=train_model_gradio, inputs=[ gr.Textbox(label="Title"), gr.Textbox(label="Keywords (comma-separated)"), gr.Textbox(label="Subheadings (comma-separated)") ], outputs="json", title="Model Training Interface", description="Enter the titles, categories, subcategories, and subheadings to filter the data and train the model." ) if __name__ == "__main__": iface.launch()