File size: 8,436 Bytes
55ecc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acfda9
55ecc31
 
 
 
 
 
7acfda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ecc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acfda9
 
2f281df
7acfda9
 
 
 
 
 
 
 
 
 
55ecc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acfda9
55ecc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Gradio interface for plotting attention.
"""

import chess
import gradio as gr
import torch
import uuid
import re

from . import constants, state, visualisation


def compute_cache(
    game_pgn,
    board_fen,
    attention_layer,
    attention_head,
    comp_index,
    state_cache,
    state_board_index,
):
    if game_pgn == "" and board_fen != "":
        board = chess.Board(board_fen)
        fen_list = [board.fen()]
    else:
        board = chess.Board()
        fen_list = [board.fen()]
        for move in game_pgn.split():
            if move.endswith("."):
                continue
            try:
                board.push_san(move)
                fen_list.append(board.fen())
            except ValueError:
                gr.Warning(f"Invalid move {move}, stopping before it.")
                break
    state_cache = [(fen, state.model_cache(fen)) for fen in fen_list]
    return (
        *make_plot(
            attention_layer, attention_head, comp_index, state_cache, state_board_index
        ),
        state_cache,
    )


def make_plot(
    attention_layer,
    attention_head,
    comp_index,
    state_cache,
    state_board_index,
):
    if state_cache is None:
        gr.Warning("Cache not computed!")
        return None, None, None, None, None

    fen, (out, cache) = state_cache[state_board_index]
    attn_list = [a[0, attention_head - 1] for a in cache[attention_layer - 1]]
    prompt_attn, *comp_attn = attn_list
    comp_attn.insert(0, prompt_attn[-1:])
    comp_attn = [a.squeeze(0) for a in comp_attn]
    if len(comp_attn) != 5:
        raise NotImplementedError("This is not implemented yet.")

    config_total = meta_total = dump_total = 0
    config_done = False
    heatmap = torch.zeros(64)
    h_index = 0
    for i, t_o in enumerate(out[0]):
        try:
            t_attn = comp_attn[comp_index - 1][i]
            if (i < 3) or (i > len(out[0]) - 10):
                dump_total += t_attn
                continue
            t_str = state.model.tokenizer.decode(t_o)
            if t_str.startswith(" ") and h_index > 0:
                config_done = True
            if not config_done:
                if t_str == "/":
                    dump_total += t_attn
                    continue
                t_str = re.sub(r"\d", lambda m: "0" * int(m.group(0)), t_str)
                config_total += t_attn
                t_str_len = len(t_str.strip())
                pre_t_attn = t_attn / t_str_len
                for j in range(t_str_len):
                    heatmap[h_index + j] = pre_t_attn
                h_index += t_str_len
            else:
                meta_total += t_attn
        except IndexError:
            break
    raw_attention = comp_attn[comp_index - 1]
    highlited_tokens = [
        (state.model.tokenizer.decode(out[0][i]), raw_attention[i])
        for i in range(len(raw_attention))
    ]
    uci_move = state.model.tokenizer.decode(out[0][-5:-1]).strip()
    board = chess.Board(fen)
    heatmap = heatmap.view(8, 8).flip(0).view(64)
    move = chess.Move.from_uci(uci_move)
    svg_board, fig = visualisation.render_heatmap(
        board, heatmap, arrows=[(move.from_square, move.to_square)]
    )
    info = (
        f"[Completion] Complete: '{state.model.tokenizer.decode(out[0][-5:])}'"
        f" Chosen: '{state.model.tokenizer.decode(out[0][-5:][comp_index-1])}'"
        f"\n[Distribution] Config: {config_total:.2f} Meta: {meta_total:.2f} Dump: {dump_total:.2f}"
    )
    id = str(uuid.uuid4())
    with open(f"{constants.FIGURE_DIRECTORY}/board_{id}.svg", "w") as f:
        f.write(svg_board)
    return (
        board.fen(),
        info,
        fig,
        f"{constants.FIGURE_DIRECTORY}/board_{id}.svg",
        highlited_tokens,
    )


def previous_board(
    attention_layer,
    attention_head,
    comp_index,
    state_cache,
    state_board_index,
):
    state_board_index -= 1
    if state_board_index < 0:
        gr.Warning("Already at first board.")
        state_board_index = 0
    return (
        *make_plot(
            attention_layer, attention_head, comp_index, state_cache, state_board_index
        ),
        state_board_index,
    )


def next_board(
    attention_layer,
    attention_head,
    comp_index,
    state_cache,
    state_board_index,
):
    state_board_index += 1
    if state_board_index >= len(state_cache):
        gr.Warning("Already at last board.")
        state_board_index = len(state_cache) - 1
    return (
        *make_plot(
            attention_layer, attention_head, comp_index, state_cache, state_board_index
        ),
        state_board_index,
    )


with gr.Blocks() as interface:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                gr.Markdown(
                    "Specify the game PGN or FEN string that you want to analyse (PGN overrides FEN)."
                )
                game_pgn = gr.Textbox(
                    label="Game PGN",
                    lines=1,
                )
                board_fen = gr.Textbox(
                    label="Board FEN",
                    lines=1,
                    max_lines=1,
                )
            compute_cache_button = gr.Button("Compute cache")
            with gr.Group():
                with gr.Row():
                    attention_layer = gr.Slider(
                        label="Attention layer",
                        minimum=1,
                        maximum=12,
                        step=1,
                        value=1,
                    )
                    attention_head = gr.Slider(
                        label="Attention head",
                        minimum=1,
                        maximum=12,
                        step=1,
                        value=1,
                    )
                    comp_index = gr.Slider(
                        label="Completion index",
                        minimum=1,
                        maximum=6,
                        step=1,
                        value=1,
                    )
                with gr.Row():
                    previous_board_button = gr.Button("Previous board")
                    next_board_button = gr.Button("Next board")
            current_board_fen = gr.Textbox(
                label="Board FEN",
                lines=1,
                max_lines=1,
            )
            info = gr.Textbox(
                label="Info",
                lines=1,
                info=(
                    "'Config' refers to the board configuration tokens."
                    "\n'Meta' to the additional board tokens (like color or castling)."
                    "\n'Dump' to the rest of the tokens (including '/')."
                ),
            )
            gr.Markdown(
                "Note that only the 'Config' attention is plotted.\n\nSee below for the raw attention."
            )
            raw_attention_html = gr.HighlightedText(
                label="Raw attention",
            )
        with gr.Column():
            image_board = gr.Image(label="Board")
            colorbar = gr.Plot(label="Colorbar")

    static_inputs = [
        attention_layer,
        attention_head,
        comp_index,
    ]
    static_outputs = [
        current_board_fen,
        info,
        colorbar,
        image_board,
        raw_attention_html,
    ]

    state_cache = gr.State(value=None)
    state_board_index = gr.State(value=0)
    compute_cache_button.click(
        compute_cache,
        inputs=[game_pgn, board_fen, *static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs, state_cache],
    )

    previous_board_button.click(
        previous_board,
        inputs=[*static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs, state_board_index],
    )
    next_board_button.click(
        next_board,
        inputs=[*static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs, state_board_index],
    )
    attention_layer.change(
        make_plot,
        inputs=[*static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs],
    )
    attention_head.change(
        make_plot,
        inputs=[*static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs],
    )
    comp_index.change(
        make_plot,
        inputs=[*static_inputs, state_cache, state_board_index],
        outputs=[*static_outputs],
    )