Spaces:
Sleeping
Sleeping
attention interface
Browse files- README.md +1 -1
- app.py +3 -0
- requirements.txt +1 -0
- src/attention_interface.py +259 -0
- src/call_interface.py +1 -3
- src/play_interface.py +26 -14
- src/state.py +49 -0
- src/visualisation.py +72 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🔥
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: GPT-2 Stockfish Debug
|
3 |
emoji: 🔥
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -7,6 +7,7 @@ import wandb
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from src import (
|
|
|
10 |
call_interface,
|
11 |
play_interface,
|
12 |
constants,
|
@@ -16,10 +17,12 @@ from src import (
|
|
16 |
demo = gr.TabbedInterface(
|
17 |
[
|
18 |
play_interface.interface,
|
|
|
19 |
call_interface.interface,
|
20 |
],
|
21 |
[
|
22 |
"Play",
|
|
|
23 |
"Call",
|
24 |
],
|
25 |
title="GPT-2 Stockfish Debug",
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from src import (
|
10 |
+
attention_interface,
|
11 |
call_interface,
|
12 |
play_interface,
|
13 |
constants,
|
|
|
17 |
demo = gr.TabbedInterface(
|
18 |
[
|
19 |
play_interface.interface,
|
20 |
+
attention_interface.interface,
|
21 |
call_interface.interface,
|
22 |
],
|
23 |
[
|
24 |
"Play",
|
25 |
+
"Attention Viz",
|
26 |
"Call",
|
27 |
],
|
28 |
title="GPT-2 Stockfish Debug",
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
python-chess
|
2 |
wandb
|
|
|
|
1 |
python-chess
|
2 |
wandb
|
3 |
+
nnsight
|
src/attention_interface.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gradio interface for plotting attention.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import chess
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import uuid
|
9 |
+
import re
|
10 |
+
|
11 |
+
from . import constants, state, visualisation
|
12 |
+
|
13 |
+
|
14 |
+
def compute_cache(
|
15 |
+
game_pgn,
|
16 |
+
attention_layer,
|
17 |
+
attention_head,
|
18 |
+
comp_index,
|
19 |
+
state_cache,
|
20 |
+
state_board_index,
|
21 |
+
):
|
22 |
+
board = chess.Board()
|
23 |
+
fen_list = [board.fen()]
|
24 |
+
for move in game_pgn.split():
|
25 |
+
if move.endswith("."):
|
26 |
+
continue
|
27 |
+
try:
|
28 |
+
board.push_san(move)
|
29 |
+
fen_list.append(board.fen())
|
30 |
+
except ValueError:
|
31 |
+
gr.Warning(f"Invalid move {move}, stopping before it.")
|
32 |
+
break
|
33 |
+
state_cache = [(fen, state.model_cache(fen)) for fen in fen_list]
|
34 |
+
return (
|
35 |
+
*make_plot(
|
36 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
37 |
+
),
|
38 |
+
state_cache,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def make_plot(
|
43 |
+
attention_layer,
|
44 |
+
attention_head,
|
45 |
+
comp_index,
|
46 |
+
state_cache,
|
47 |
+
state_board_index,
|
48 |
+
):
|
49 |
+
if state_cache is None:
|
50 |
+
gr.Warning("Cache not computed!")
|
51 |
+
return None, None, None, None, None
|
52 |
+
|
53 |
+
fen, (out, cache) = state_cache[state_board_index]
|
54 |
+
attn_list = [a[0, attention_head - 1] for a in cache[attention_layer - 1]]
|
55 |
+
prompt_attn, *comp_attn = attn_list
|
56 |
+
comp_attn.insert(0, prompt_attn[-1:])
|
57 |
+
comp_attn = [a.squeeze(0) for a in comp_attn]
|
58 |
+
if len(comp_attn) != 5:
|
59 |
+
raise NotImplementedError("This is not implemented yet.")
|
60 |
+
|
61 |
+
config_total = meta_total = dump_total = 0
|
62 |
+
config_done = False
|
63 |
+
heatmap = torch.zeros(64)
|
64 |
+
h_index = 0
|
65 |
+
for i, t_o in enumerate(out[0]):
|
66 |
+
try:
|
67 |
+
t_attn = comp_attn[comp_index - 1][i]
|
68 |
+
if (i < 3) or (i > len(out[0]) - 10):
|
69 |
+
dump_total += t_attn
|
70 |
+
continue
|
71 |
+
t_str = state.model.tokenizer.decode(t_o)
|
72 |
+
if t_str.startswith(" ") and h_index > 0:
|
73 |
+
config_done = True
|
74 |
+
if not config_done:
|
75 |
+
if t_str == "/":
|
76 |
+
dump_total += t_attn
|
77 |
+
continue
|
78 |
+
t_str = re.sub(r"\d", lambda m: "0" * int(m.group(0)), t_str)
|
79 |
+
config_total += t_attn
|
80 |
+
t_str_len = len(t_str.strip())
|
81 |
+
pre_t_attn = t_attn / t_str_len
|
82 |
+
for j in range(t_str_len):
|
83 |
+
heatmap[h_index + j] = pre_t_attn
|
84 |
+
h_index += t_str_len
|
85 |
+
else:
|
86 |
+
meta_total += t_attn
|
87 |
+
except IndexError:
|
88 |
+
break
|
89 |
+
raw_attention = comp_attn[comp_index - 1]
|
90 |
+
highlited_tokens = [
|
91 |
+
(state.model.tokenizer.decode(out[0][i]), raw_attention[i])
|
92 |
+
for i in range(len(raw_attention))
|
93 |
+
]
|
94 |
+
uci_move = state.model.tokenizer.decode(out[0][-5:-1]).strip()
|
95 |
+
board = chess.Board(fen)
|
96 |
+
heatmap = heatmap.view(8, 8).flip(0).view(64)
|
97 |
+
move = chess.Move.from_uci(uci_move)
|
98 |
+
svg_board, fig = visualisation.render_heatmap(
|
99 |
+
board, heatmap, arrows=[(move.from_square, move.to_square)]
|
100 |
+
)
|
101 |
+
info = (
|
102 |
+
f"[Completion] Complete: '{state.model.tokenizer.decode(out[0][-5:])}'"
|
103 |
+
f" Chosen: '{state.model.tokenizer.decode(out[0][-5:][comp_index-1])}'"
|
104 |
+
f"\n[Distribution] Config: {config_total:.2f} Meta: {meta_total:.2f} Dump: {dump_total:.2f}"
|
105 |
+
)
|
106 |
+
id = str(uuid.uuid4())
|
107 |
+
with open(f"{constants.FIGURE_DIRECTORY}/board_{id}.svg", "w") as f:
|
108 |
+
f.write(svg_board)
|
109 |
+
return (
|
110 |
+
board.fen(),
|
111 |
+
info,
|
112 |
+
fig,
|
113 |
+
f"{constants.FIGURE_DIRECTORY}/board_{id}.svg",
|
114 |
+
highlited_tokens,
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
def previous_board(
|
119 |
+
attention_layer,
|
120 |
+
attention_head,
|
121 |
+
comp_index,
|
122 |
+
state_cache,
|
123 |
+
state_board_index,
|
124 |
+
):
|
125 |
+
state_board_index -= 1
|
126 |
+
if state_board_index < 0:
|
127 |
+
gr.Warning("Already at first board.")
|
128 |
+
state_board_index = 0
|
129 |
+
return (
|
130 |
+
*make_plot(
|
131 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
132 |
+
),
|
133 |
+
state_board_index,
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
def next_board(
|
138 |
+
attention_layer,
|
139 |
+
attention_head,
|
140 |
+
comp_index,
|
141 |
+
state_cache,
|
142 |
+
state_board_index,
|
143 |
+
):
|
144 |
+
state_board_index += 1
|
145 |
+
if state_board_index >= len(state_cache):
|
146 |
+
gr.Warning("Already at last board.")
|
147 |
+
state_board_index = len(state_cache) - 1
|
148 |
+
return (
|
149 |
+
*make_plot(
|
150 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
151 |
+
),
|
152 |
+
state_board_index,
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
with gr.Blocks() as interface:
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column():
|
159 |
+
game_pgn = gr.Textbox(
|
160 |
+
label="Game PGN",
|
161 |
+
lines=1,
|
162 |
+
)
|
163 |
+
compute_cache_button = gr.Button("Compute cache")
|
164 |
+
with gr.Group():
|
165 |
+
with gr.Row():
|
166 |
+
attention_layer = gr.Slider(
|
167 |
+
label="Attention layer",
|
168 |
+
minimum=1,
|
169 |
+
maximum=12,
|
170 |
+
step=1,
|
171 |
+
value=1,
|
172 |
+
)
|
173 |
+
attention_head = gr.Slider(
|
174 |
+
label="Attention head",
|
175 |
+
minimum=1,
|
176 |
+
maximum=12,
|
177 |
+
step=1,
|
178 |
+
value=1,
|
179 |
+
)
|
180 |
+
comp_index = gr.Slider(
|
181 |
+
label="Completion index",
|
182 |
+
minimum=1,
|
183 |
+
maximum=6,
|
184 |
+
step=1,
|
185 |
+
value=1,
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
previous_board_button = gr.Button("Previous board")
|
189 |
+
next_board_button = gr.Button("Next board")
|
190 |
+
current_board_fen = gr.Textbox(
|
191 |
+
label="Board FEN",
|
192 |
+
lines=1,
|
193 |
+
max_lines=1,
|
194 |
+
)
|
195 |
+
info = gr.Textbox(
|
196 |
+
label="Info",
|
197 |
+
lines=1,
|
198 |
+
info=(
|
199 |
+
"'Config' refers to the board configuration tokens."
|
200 |
+
"\n'Meta' to the additional board tokens (like color or castling)."
|
201 |
+
"\n'Dump' to the rest of the tokens (including '/')."
|
202 |
+
),
|
203 |
+
)
|
204 |
+
gr.Markdown(
|
205 |
+
"Note that only the 'Config' attention is plotted.\n\nSee below for the raw attention."
|
206 |
+
)
|
207 |
+
raw_attention_html = gr.HighlightedText(
|
208 |
+
label="Raw attention",
|
209 |
+
)
|
210 |
+
with gr.Column():
|
211 |
+
image_board = gr.Image(label="Board")
|
212 |
+
colorbar = gr.Plot(label="Colorbar")
|
213 |
+
|
214 |
+
static_inputs = [
|
215 |
+
attention_layer,
|
216 |
+
attention_head,
|
217 |
+
comp_index,
|
218 |
+
]
|
219 |
+
static_outputs = [
|
220 |
+
current_board_fen,
|
221 |
+
info,
|
222 |
+
colorbar,
|
223 |
+
image_board,
|
224 |
+
raw_attention_html,
|
225 |
+
]
|
226 |
+
|
227 |
+
state_cache = gr.State(value=None)
|
228 |
+
state_board_index = gr.State(value=0)
|
229 |
+
compute_cache_button.click(
|
230 |
+
compute_cache,
|
231 |
+
inputs=[game_pgn, *static_inputs, state_cache, state_board_index],
|
232 |
+
outputs=[*static_outputs, state_cache],
|
233 |
+
)
|
234 |
+
|
235 |
+
previous_board_button.click(
|
236 |
+
previous_board,
|
237 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
238 |
+
outputs=[*static_outputs, state_board_index],
|
239 |
+
)
|
240 |
+
next_board_button.click(
|
241 |
+
next_board,
|
242 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
243 |
+
outputs=[*static_outputs, state_board_index],
|
244 |
+
)
|
245 |
+
attention_layer.change(
|
246 |
+
make_plot,
|
247 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
248 |
+
outputs=[*static_outputs],
|
249 |
+
)
|
250 |
+
attention_head.change(
|
251 |
+
make_plot,
|
252 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
253 |
+
outputs=[*static_outputs],
|
254 |
+
)
|
255 |
+
comp_index.change(
|
256 |
+
make_plot,
|
257 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
258 |
+
outputs=[*static_outputs],
|
259 |
+
)
|
src/call_interface.py
CHANGED
@@ -9,9 +9,7 @@ import gradio as gr
|
|
9 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
10 |
|
11 |
headers = {"X-Wait-For-Model": "true"}
|
12 |
-
client = huggingface_hub.InferenceClient(
|
13 |
-
model=model_name, headers=headers
|
14 |
-
)
|
15 |
|
16 |
inputs = gr.Textbox(label="Prompt")
|
17 |
outputs = gr.Textbox(label="Completion")
|
|
|
9 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
10 |
|
11 |
headers = {"X-Wait-For-Model": "true"}
|
12 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers)
|
|
|
|
|
13 |
|
14 |
inputs = gr.Textbox(label="Prompt")
|
15 |
outputs = gr.Textbox(label="Completion")
|
src/play_interface.py
CHANGED
@@ -15,17 +15,20 @@ import gradio as gr
|
|
15 |
from . import constants
|
16 |
|
17 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
18 |
-
headers = {
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
inference_fn = client.text_generation
|
23 |
|
24 |
|
25 |
def plot_board(
|
26 |
board: chess.Board,
|
27 |
-
orientation: bool =
|
28 |
):
|
|
|
|
|
29 |
try:
|
30 |
last_move = board.peek()
|
31 |
arrows = [(last_move.from_square, last_move.to_square)]
|
@@ -47,17 +50,17 @@ def plot_board(
|
|
47 |
f.write(svg_board)
|
48 |
return f"{constants.FIGURE_DIRECTORY}/board_{id}.svg"
|
49 |
|
|
|
50 |
def render_board(
|
51 |
current_board: chess.Board,
|
52 |
-
orientation: Optional[bool] =
|
53 |
):
|
54 |
fen = current_board.fen()
|
55 |
pgn = current_board.root().variation_san(current_board.move_stack)
|
56 |
-
if orientation is None:
|
57 |
-
orientation = current_board.turn
|
58 |
image_board = plot_board(current_board, orientation=orientation)
|
59 |
return fen, pgn, "", image_board
|
60 |
|
|
|
61 |
def play_user_move(
|
62 |
uci_move: str,
|
63 |
current_board: chess.Board,
|
@@ -65,6 +68,7 @@ def play_user_move(
|
|
65 |
current_board.push_uci(uci_move)
|
66 |
return current_board
|
67 |
|
|
|
68 |
def play_ai_move(
|
69 |
current_board: chess.Board,
|
70 |
temperature: float = 0.1,
|
@@ -76,6 +80,7 @@ def play_ai_move(
|
|
76 |
current_board.push_uci(uci_move.strip())
|
77 |
return current_board
|
78 |
|
|
|
79 |
def try_play_move(
|
80 |
username: str,
|
81 |
move_to_play: str,
|
@@ -83,7 +88,10 @@ def try_play_move(
|
|
83 |
):
|
84 |
if current_board.is_game_over():
|
85 |
gr.Warning("The game is already over")
|
86 |
-
return
|
|
|
|
|
|
|
87 |
try:
|
88 |
current_board = play_user_move(move_to_play.strip(), current_board)
|
89 |
if current_board.is_game_over():
|
@@ -93,17 +101,20 @@ def try_play_move(
|
|
93 |
{
|
94 |
"username": username,
|
95 |
"winin": current_board.fullmove_number,
|
96 |
-
"pgn": current_board.root().variation_san(
|
|
|
|
|
97 |
}
|
98 |
)
|
99 |
run.finish()
|
100 |
-
return
|
|
|
|
|
|
|
101 |
except:
|
102 |
gr.Warning("Invalid move")
|
103 |
return *render_board(current_board), current_board
|
104 |
-
temperature_retries = [
|
105 |
-
(i+1)/10 for i in range(10)
|
106 |
-
]
|
107 |
for temperature in temperature_retries:
|
108 |
try:
|
109 |
current_board = play_ai_move(current_board, temperature=temperature)
|
@@ -187,6 +198,7 @@ with gr.Blocks() as interface:
|
|
187 |
if is_ai_white:
|
188 |
board = play_ai_move(board)
|
189 |
return *render_board(board), board
|
|
|
190 |
reset_button.click(
|
191 |
reset_board,
|
192 |
outputs=[*static_outputs, state_board],
|
|
|
15 |
from . import constants
|
16 |
|
17 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
18 |
+
headers = {
|
19 |
+
"X-Wait-For-Model": "true",
|
20 |
+
"X-Use-Cache": "false",
|
21 |
+
}
|
22 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers)
|
23 |
inference_fn = client.text_generation
|
24 |
|
25 |
|
26 |
def plot_board(
|
27 |
board: chess.Board,
|
28 |
+
orientation: Optional[bool] = None,
|
29 |
):
|
30 |
+
if orientation is None:
|
31 |
+
orientation = board.turn
|
32 |
try:
|
33 |
last_move = board.peek()
|
34 |
arrows = [(last_move.from_square, last_move.to_square)]
|
|
|
50 |
f.write(svg_board)
|
51 |
return f"{constants.FIGURE_DIRECTORY}/board_{id}.svg"
|
52 |
|
53 |
+
|
54 |
def render_board(
|
55 |
current_board: chess.Board,
|
56 |
+
orientation: Optional[bool] = None,
|
57 |
):
|
58 |
fen = current_board.fen()
|
59 |
pgn = current_board.root().variation_san(current_board.move_stack)
|
|
|
|
|
60 |
image_board = plot_board(current_board, orientation=orientation)
|
61 |
return fen, pgn, "", image_board
|
62 |
|
63 |
+
|
64 |
def play_user_move(
|
65 |
uci_move: str,
|
66 |
current_board: chess.Board,
|
|
|
68 |
current_board.push_uci(uci_move)
|
69 |
return current_board
|
70 |
|
71 |
+
|
72 |
def play_ai_move(
|
73 |
current_board: chess.Board,
|
74 |
temperature: float = 0.1,
|
|
|
80 |
current_board.push_uci(uci_move.strip())
|
81 |
return current_board
|
82 |
|
83 |
+
|
84 |
def try_play_move(
|
85 |
username: str,
|
86 |
move_to_play: str,
|
|
|
88 |
):
|
89 |
if current_board.is_game_over():
|
90 |
gr.Warning("The game is already over")
|
91 |
+
return (
|
92 |
+
*render_board(current_board, orientation=not current_board.turn),
|
93 |
+
current_board,
|
94 |
+
)
|
95 |
try:
|
96 |
current_board = play_user_move(move_to_play.strip(), current_board)
|
97 |
if current_board.is_game_over():
|
|
|
101 |
{
|
102 |
"username": username,
|
103 |
"winin": current_board.fullmove_number,
|
104 |
+
"pgn": current_board.root().variation_san(
|
105 |
+
current_board.move_stack
|
106 |
+
),
|
107 |
}
|
108 |
)
|
109 |
run.finish()
|
110 |
+
return (
|
111 |
+
*render_board(current_board, orientation=not current_board.turn),
|
112 |
+
current_board,
|
113 |
+
)
|
114 |
except:
|
115 |
gr.Warning("Invalid move")
|
116 |
return *render_board(current_board), current_board
|
117 |
+
temperature_retries = [(i + 1) / 10 for i in range(10)]
|
|
|
|
|
118 |
for temperature in temperature_retries:
|
119 |
try:
|
120 |
current_board = play_ai_move(current_board, temperature=temperature)
|
|
|
198 |
if is_ai_white:
|
199 |
board = play_ai_move(board)
|
200 |
return *render_board(board), board
|
201 |
+
|
202 |
reset_button.click(
|
203 |
reset_board,
|
204 |
outputs=[*static_outputs, state_board],
|
src/state.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Global state of the app.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import re
|
5 |
+
|
6 |
+
from transformers import AutoConfig
|
7 |
+
import torch
|
8 |
+
from nnsight import LanguageModel
|
9 |
+
|
10 |
+
conf = AutoConfig.from_pretrained("yp-edu/gpt2-stockfish-debug")
|
11 |
+
model = LanguageModel("yp-edu/gpt2-stockfish-debug")
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
|
15 |
+
def make_prompt(fen):
|
16 |
+
board, player, castling, *fen_remaining = fen.split()
|
17 |
+
board = re.sub(r"(\d)", lambda m: "0" * int(m.group(1)), board)
|
18 |
+
spaced_board = " ".join(board)
|
19 |
+
spaced_castling = " ".join(castling)
|
20 |
+
full_fen = f"{spaced_board} {player} {spaced_castling} {' '.join(fen_remaining)}"
|
21 |
+
return f"FEN: {full_fen} \nMOVE:"
|
22 |
+
|
23 |
+
|
24 |
+
def model_cache(fen):
|
25 |
+
global model
|
26 |
+
prompt = f"FEN: {fen}\nMOVE:"
|
27 |
+
attentions = {i: [] for i in range(12)}
|
28 |
+
with model.generate(prompt, max_new_tokens=10, output_attentions=True) as tracer:
|
29 |
+
out = model.generator.output.save()
|
30 |
+
for i in range(10):
|
31 |
+
for i in range(12):
|
32 |
+
attentions[i].append(model.transformer.h[i].attn.output[2].save())
|
33 |
+
tracer.next()
|
34 |
+
real_attentions = {}
|
35 |
+
for i in range(12):
|
36 |
+
real_attentions[i] = []
|
37 |
+
for a in attentions[i]:
|
38 |
+
try:
|
39 |
+
_ = a.shape
|
40 |
+
real_attentions[i].append(a)
|
41 |
+
except ValueError:
|
42 |
+
break
|
43 |
+
return out, real_attentions
|
44 |
+
|
45 |
+
|
46 |
+
def attribute_seqence(fen, out, attn_tensor):
|
47 |
+
global model
|
48 |
+
|
49 |
+
out_str = model.tokenizer.batch_decode(out)[0]
|
src/visualisation.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Visualisation utils.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import chess
|
6 |
+
import chess.svg
|
7 |
+
import matplotlib
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
|
11 |
+
COLOR_MAP = matplotlib.colormaps["RdYlBu_r"].resampled(1000)
|
12 |
+
ALPHA = 1.0
|
13 |
+
|
14 |
+
|
15 |
+
def render_heatmap(
|
16 |
+
board,
|
17 |
+
heatmap,
|
18 |
+
square=None,
|
19 |
+
vmin=None,
|
20 |
+
vmax=None,
|
21 |
+
arrows=None,
|
22 |
+
normalise="none",
|
23 |
+
):
|
24 |
+
"""
|
25 |
+
Render a heatmap on the board.
|
26 |
+
"""
|
27 |
+
if normalise == "abs":
|
28 |
+
a_max = heatmap.abs().max()
|
29 |
+
if a_max != 0:
|
30 |
+
heatmap = heatmap / a_max
|
31 |
+
vmin = -1
|
32 |
+
vmax = 1
|
33 |
+
if vmin is None:
|
34 |
+
vmin = heatmap.min()
|
35 |
+
if vmax is None:
|
36 |
+
vmax = heatmap.max()
|
37 |
+
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
|
38 |
+
|
39 |
+
color_dict = {}
|
40 |
+
for square_index in range(64):
|
41 |
+
color = COLOR_MAP(norm(heatmap[square_index]))
|
42 |
+
color = (*color[:3], ALPHA)
|
43 |
+
color_dict[square_index] = matplotlib.colors.to_hex(color, keep_alpha=True)
|
44 |
+
fig = plt.figure(figsize=(6, 0.6))
|
45 |
+
ax = plt.gca()
|
46 |
+
ax.axis("off")
|
47 |
+
fig.colorbar(
|
48 |
+
matplotlib.cm.ScalarMappable(norm=norm, cmap=COLOR_MAP),
|
49 |
+
ax=ax,
|
50 |
+
orientation="horizontal",
|
51 |
+
fraction=1.0,
|
52 |
+
)
|
53 |
+
if square is not None:
|
54 |
+
try:
|
55 |
+
check = chess.parse_square(square)
|
56 |
+
except ValueError:
|
57 |
+
check = None
|
58 |
+
else:
|
59 |
+
check = None
|
60 |
+
if arrows is None:
|
61 |
+
arrows = []
|
62 |
+
plt.close()
|
63 |
+
return (
|
64 |
+
chess.svg.board(
|
65 |
+
board,
|
66 |
+
check=check,
|
67 |
+
fill=color_dict,
|
68 |
+
size=350,
|
69 |
+
arrows=arrows,
|
70 |
+
),
|
71 |
+
fig,
|
72 |
+
)
|