ZhengPeng7's picture
Initialization on my BiRefNet online demo.
81b1a0e
raw
history blame
15.4 kB
import torch
import torch.nn as nn
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, vgg16_bn
from torchvision.models import resnet50
from kornia.filters import laplacian
from config import Config
from dataset import class_labels_TR_sorted
from models.backbones.build_backbone import build_backbone
from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
from models.modules.lateral_blocks import BasicLatBlk
from models.modules.aspp import ASPP, ASPPDeformable
from models.modules.ing import *
from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
from models.refinement.stem_layer import StemLayer
class BiRefNet(nn.Module):
def __init__(self):
super(BiRefNet, self).__init__()
self.config = Config()
self.epoch = 1
self.bb = build_backbone(self.config.bb, pretrained=False)
channels = self.config.lateral_channels_in_collection
if self.config.auxiliary_classification:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.cls_head = nn.Sequential(
nn.Linear(channels[0], len(class_labels_TR_sorted))
)
if self.config.squeeze_block:
self.squeeze_module = nn.Sequential(*[
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
])
self.decoder = Decoder(channels)
if self.config.locate_head:
self.locate_header = nn.ModuleList([
BasicDecBlk(channels[0], channels[-1]),
nn.Sequential(
nn.Conv2d(channels[-1], 1, 1, 1, 0),
)
])
if self.config.ender:
self.dec_end = nn.Sequential(
nn.Conv2d(1, 16, 3, 1, 1),
nn.Conv2d(16, 1, 3, 1, 1),
nn.ReLU(inplace=True),
)
# refine patch-level segmentation
if self.config.refine:
if self.config.refine == 'itself':
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
else:
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
if self.config.freeze_bb:
# Freeze the backbone...
print(self.named_parameters())
for key, value in self.named_parameters():
if 'bb.' in key and 'refiner.' not in key:
value.requires_grad = False
def forward_enc(self, x):
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
else:
x1, x2, x3, x4 = self.bb(x)
if self.config.mul_scl_ipt == 'cat':
B, C, H, W = x.shape
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
elif self.config.mul_scl_ipt == 'add':
B, C, H, W = x.shape
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
if self.config.cxt:
x4 = torch.cat(
(
*[
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
][-len(self.config.cxt):],
x4
),
dim=1
)
return (x1, x2, x3, x4), class_preds
# def forward_loc(self, x):
# ########## Encoder ##########
# (x1, x2, x3, x4), class_preds = self.forward_enc(x)
# if self.config.squeeze_block:
# x4 = self.squeeze_module(x4)
# if self.config.locate_head:
# locate_preds = self.locate_header[1](
# F.interpolate(
# self.locate_header[0](
# F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
# ), size=x.shape[2:], mode='bilinear', align_corners=True
# )
# )
def forward_ori(self, x):
########## Encoder ##########
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
if self.config.squeeze_block:
x4 = self.squeeze_module(x4)
########## Decoder ##########
features = [x, x1, x2, x3, x4]
if self.config.out_ref:
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
scaled_preds = self.decoder(features)
return scaled_preds, class_preds
def forward_ref(self, x, pred):
# refine patch-level segmentation
if pred.shape[2:] != x.shape[2:]:
pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
# pred = pred.sigmoid()
if self.config.refine == 'itself':
x = self.stem_layer(torch.cat([x, pred], dim=1))
scaled_preds, class_preds = self.forward_ori(x)
else:
scaled_preds = self.refiner([x, pred])
class_preds = None
return scaled_preds, class_preds
def forward_ref_end(self, x):
# remove the grids of concatenated preds
return self.dec_end(x) if self.config.ender else x
# def forward(self, x):
# if self.config.refine:
# scaled_preds, class_preds_ori = self.forward_ori(F.interpolate(x, size=(x.shape[2]//4, x.shape[3]//4), mode='bilinear', align_corners=True))
# class_preds_lst = [class_preds_ori]
# for _ in range(self.config.refine_iteration):
# scaled_preds_ref, class_preds_ref = self.forward_ref(x, scaled_preds[-1])
# scaled_preds += scaled_preds_ref
# class_preds_lst.append(class_preds_ref)
# else:
# scaled_preds, class_preds = self.forward_ori(x)
# class_preds_lst = [class_preds]
# return [scaled_preds, class_preds_lst] if self.training else scaled_preds
def forward(self, x):
scaled_preds, class_preds = self.forward_ori(x)
class_preds_lst = [class_preds]
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
class Decoder(nn.Module):
def __init__(self, channels):
super(Decoder, self).__init__()
self.config = Config()
DecoderBlock = eval(self.config.dec_blk)
LateralBlock = eval(self.config.lat_blk)
if self.config.dec_ipt:
self.split = self.config.dec_ipt_split
N_dec_ipt = 64
DBlock = SimpleConvs
ic = 64
ipt_cha_opt = 1
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
else:
self.split = None
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
self.lateral_block4 = LateralBlock(channels[1], channels[1])
self.lateral_block3 = LateralBlock(channels[2], channels[2])
self.lateral_block2 = LateralBlock(channels[3], channels[3])
if self.config.ms_supervision:
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
if self.config.out_ref:
_N = 16
# self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
# self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
# self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
def get_patches_batch(self, x, p):
_size_h, _size_w = p.shape[2:]
patches_batch = []
for idx in range(x.shape[0]):
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
patches_x = []
for column_x in columns_x:
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
patch_sample = torch.cat(patches_x, dim=1)
patches_batch.append(patch_sample)
return torch.cat(patches_batch, dim=0)
def forward(self, features):
if self.config.out_ref:
outs_gdt_pred = []
outs_gdt_label = []
x, x1, x2, x3, x4, gdt_gt = features
else:
x, x1, x2, x3, x4 = features
outs = []
p4 = self.decoder_block4(x4)
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
_p3 = _p4 + self.lateral_block4(x3)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
p3 = self.decoder_block3(_p3)
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
if self.config.out_ref:
# >> GT:
# m3 --dilation--> m3_dia
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
m3_dia = m3
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
outs_gdt_label.append(gdt_label_main_3)
# >> Pred:
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
# F_3^G --sigmoid--> A_3^G
p3_gdt = self.gdt_convs_3(p3)
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
outs_gdt_pred.append(gdt_pred_3)
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
# >> Finally:
# p3 = p3 * A_3^G
p3 = p3 * gdt_attn_3
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
_p2 = _p3 + self.lateral_block3(x2)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
p2 = self.decoder_block2(_p2)
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
if self.config.out_ref:
# >> GT:
m2_dia = m2
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
outs_gdt_label.append(gdt_label_main_2)
# >> Pred:
p2_gdt = self.gdt_convs_2(p2)
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
outs_gdt_pred.append(gdt_pred_2)
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
# >> Finally:
p2 = p2 * gdt_attn_2
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
_p1 = _p2 + self.lateral_block2(x1)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
_p1 = self.decoder_block1(_p1)
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
p1_out = self.conv_out1(_p1)
if self.config.ms_supervision:
outs.append(m4)
outs.append(m3)
outs.append(m2)
outs.append(p1_out)
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
class SimpleConvs(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, inter_channels=64
) -> None:
super().__init__()
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
def forward(self, x):
return self.conv_out(self.conv1(x))