Spaces:
Runtime error
Runtime error
File size: 11,487 Bytes
a7047db a58bd0b 090e9aa a58bd0b a7047db 890f63d a58bd0b 890f63d a7047db a58bd0b a7047db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import json
import requests
import os
from text_generation import Client, InferenceAPIClient
# Load pre-trained model and tokenizer - for THUDM model
from transformers import AutoModel, AutoTokenizer
tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model_glm = model_glm.eval()
# Load pre-trained model and tokenizer for Chinese to English translator
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
#Predict function for CHATGPT
def predict_chatgpt(inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt=[], history=[]):
#Define payload and header for chatgpt API
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
#debug
#print(f"chat_counter_chatgpt - {chat_counter_chatgpt}")
#Handling the different roles for ChatGPT
if chat_counter_chatgpt != 0 :
messages=[]
for data in chatbot_chatgpt:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature_chatgpt, #1.0,
"top_p": top_p_chatgpt, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter_chatgpt+=1
history.append(inputs)
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping the first chunk
if counter == 0:
counter+=1
continue
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 13 and "content" in json.loads(chunk[6:])['choices'][0]["delta"]:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter_chatgpt # this resembles {chatbot: chat, state: history}
# Define function to generate model predictions and update the history
def predict_glm(input, history=[]):
response, history = model_glm.chat(tokenizer_glm, input, history)
# translate Chinese to English
history = [(query, translate_Chinese_English(response)) for query, response in history]
return history, history #[history] + updates
def translate_Chinese_English(chinese_text):
# translate Chinese to English
tokenizer_chtoen.src_lang = "zh"
encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt")
generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en"))
trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True)
return trans_eng_text[0]
# Define function to generate model predictions and update the history
def predict_glm_stream(input, history=[]): #, top_p, temperature):
response, history = model_glm.chat(tokenizer_glm, input, history)
print(f"outside for loop resonse is ^^- {response}")
print(f"outside for loop history is ^^- {history}")
top_p = 1.0
temperature = 1.0
for response, history in model.stream_chat(tokenizer_glm, input, history, top_p=1.0, temperature=1.0): #max_length=max_length,
print(f"In for loop resonse is ^^- {response}")
print(f"In for loop history is ^^- {history}")
# translate Chinese to English
history = [(query, translate_Chinese_English(response)) for query, response in history]
print(f"In for loop translated history is ^^- {history}")
yield history, history #[history] + updates
"""
def predict(input, max_length, top_p, temperature, history=None):
if history is None:
history = []
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
updates = []
for query, response in history:
updates.append(gr.update(visible=True, value="user:" + query)) #用户
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response))
if len(updates) < MAX_BOXES:
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
yield [history] + updates
"""
def reset_textbox():
return gr.update(value="")
def reset_chat(chatbot, state):
# debug
#print(f"^^chatbot value is - {chatbot}")
#print(f"^^state value is - {state}")
return None, []
#title = """<h1 align="center">🔥🔥Comparison: ChatGPT & OpenChatKit </h1><br><h3 align="center">🚀A Gradio Streaming Demo</h3><br>Official Demo: <a href="https://huggingface.co/spaces/togethercomputer/OpenChatKit">OpenChatKit feedback app</a>"""
title = """<h1 align="center">🔥🔥Comparison: ChatGPT & Open Sourced CHatGLM-6B </h1><br><h3 align="center">🚀A Gradio Chatbot Demo</h3>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of multiple LLMs when prompted in similar ways.
"""
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatgpt {height: 520px; overflow: auto;}
#chatglm {height: 520px; overflow: auto;} """ ) as demo:
#chattogether {height: 520px; overflow: auto;} """ ) as demo:
#clear {width: 100px; height:50px; font-size:12px}""") as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=14):
with gr.Box():
with gr.Row():
with gr.Column(scale=13):
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here for ChatGPT")
inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " )
with gr.Column(scale=1):
b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True)
b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True)
state_chatgpt = gr.State([])
#state_together = gr.State([])
state_glm = gr.State([])
with gr.Box():
with gr.Row():
chatbot_chatgpt = gr.Chatbot(elem_id="chatgpt", label='ChatGPT API - OPENAI')
#chatbot_together = gr.Chatbot(elem_id="chattogether", label='OpenChatKit - Text Generation')
chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B')
with gr.Column(scale=2, elem_id='parameters'):
with gr.Box():
gr.HTML("Parameters for #OpenCHAtKit", visible=False)
top_p = gr.Slider(minimum=-0, maximum=1.0,value=0.25, step=0.05,interactive=True, label="Top-p", visible=False)
temperature = gr.Slider(minimum=-0, maximum=5.0, value=0.6, step=0.1, interactive=True, label="Temperature", visible=False)
top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", visible=False)
repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.01, step=0.01, interactive=True, label="Repetition Penalty", visible=False)
watermark = gr.Checkbox(value=True, label="Text watermarking", visible=False)
model = gr.CheckboxGroup(value="Rallio67/joi2_20B_instruct_alpha",
choices=["togethercomputer/GPT-NeoXT-Chat-Base-20B", "Rallio67/joi2_20B_instruct_alpha", "google/flan-t5-xxl", "google/flan-ul2", "bigscience/bloomz", "EleutherAI/gpt-neox-20b",],
label="Model",visible=False,)
temp_textbox_together = gr.Textbox(value=model.choices[0], visible=False)
with gr.Box():
gr.HTML("Parameters for OpenAI's ChatGPT")
top_p_chatgpt = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p",)
temperature_chatgpt = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
chat_counter_chatgpt = gr.Number(value=0, visible=False, precision=0)
inputs.submit(reset_textbox, [], [inputs])
inputs.submit( predict_chatgpt,
[inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt, state_chatgpt],
[chatbot_chatgpt, state_chatgpt, chat_counter_chatgpt],)
#inputs.submit( predict_glm,
# [inputs, state_glm, ],
# [chatbot_glm, state_glm],)
#b1.click( predict_glm,
# [inputs, state_glm, ],
# [chatbot_glm, state_glm],)
inputs.submit( predict_glm_stream,
[inputs, state_glm, ],
[chatbot_glm, state_glm],)
b1.click( predict_glm_stream,
[inputs, state_glm, ],
[chatbot_glm, state_glm],)
b1.click( predict_chatgpt,
[inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt, state_chatgpt],
[chatbot_chatgpt, state_chatgpt, chat_counter_chatgpt],)
b2.click(reset_chat, [chatbot_chatgpt, state_chatgpt], [chatbot_chatgpt, state_chatgpt])
#b2.click(reset_chat, [chatbot_together, state_together], [chatbot_together, state_together])
b2.click(reset_chat, [chatbot_glm, state_glm], [chatbot_glm, state_glm])
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/OpenChatKit_ChatGPT_Comparison?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(height= 2500, debug=True) |