import gradio as gr
import json
import requests
import os
from text_generation import Client, InferenceAPIClient
# Load pre-trained model and tokenizer - for THUDM model
from transformers import AutoModel, AutoTokenizer
tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model_glm = model_glm.eval()
# Load pre-trained model and tokenizer for Chinese to English translator
#from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
#model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
#tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
# Define function to generate model predictions and update the history
def predict_glm_stream(input, top_p, temperature, history=[]):
history = list(map(tuple, history))
for response, updates in model_glm.stream_chat(tokenizer_glm, input, history, top_p=top_p, temperature=temperature):
yield updates
def reset_textbox():
return gr.update(value="")
def translate_Chinese_English(chinese_text):
# translate Chinese to English
tokenizer_chtoen.src_lang = "zh"
encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt")
generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en"))
trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True)
return trans_eng_text[0]
title = """
🚀CHatGLM-6B - A Streaming Chatbot with Gradio
Enhance User Experience with Streaming and customizable Gradio Themes
"""
header = """Find on Huggingface at THUDM/chatglm-6b, and here on Github."""
description = """
ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters.
However, due to the small size of ChatGLM-6B, it is currently known to have considerable limitations, such as factual/mathematical logic errors, possible generation of harmful/biased content, weak contextual ability, self-awareness confusion, and Generate content that completely contradicts Chinese instructions for English instructions. Please understand these issues before use to avoid misunderstandings. A larger ChatGLM based on the 130 billion parameter GLM-130B is under development in internal testing.
"""
theme = gr.themes.Default(#color contructors
primary_hue="violet",
secondary_hue="indigo",
neutral_hue="purple").set(slider_color="#800080")
with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
#chatglm {height: 520px; overflow: auto;} """, theme=theme ) as demo:
gr.HTML(title)
gr.HTML(header)
with gr.Column(): #(scale=10):
with gr.Box():
with gr.Row():
with gr.Column(scale=8):
inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " )
with gr.Column(scale=1):
b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True)
with gr.Column(scale=1):
b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True)
state_glm = gr.State([])
with gr.Box():
chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B')
with gr.Accordion(label="Parameters for ChatGLM-6B", open=False):
gr.HTML("Parameters for ChatGLM-6B", visible=True)
top_p = gr.Slider(minimum=-0, maximum=1.0,value=1, step=0.05,interactive=True, label="Top-p", visible=True)
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1, step=0.1, interactive=True, label="Temperature", visible=True)
inputs.submit( predict_glm_stream,
[inputs, top_p, temperature, chatbot_glm ],
[chatbot_glm],)
inputs.submit(reset_textbox, [], [inputs])
b1.click( predict_glm_stream,
[inputs, top_p, temperature, chatbot_glm ],
[chatbot_glm],)
b1.click(reset_textbox, [], [inputs])
b2.click(lambda: None, None, chatbot_glm, queue=False)
gr.HTML('''Duplicate the Space and run securely with your OpenAI API Key''')
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(height= 800, debug=True)