import gradio as gr import json import requests import os from text_generation import Client, InferenceAPIClient # Load pre-trained model and tokenizer - for THUDM model from transformers import AutoModel, AutoTokenizer tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() model_glm = model_glm.eval() # Load pre-trained model and tokenizer for Chinese to English translator #from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer #model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") #tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") # Define function to generate model predictions and update the history def predict_glm_stream(input, top_p, temperature, history=[]): history = list(map(tuple, history)) for response, updates in model_glm.stream_chat(tokenizer_glm, input, history, top_p=top_p, temperature=temperature): yield updates def reset_textbox(): return gr.update(value="") def translate_Chinese_English(chinese_text): # translate Chinese to English tokenizer_chtoen.src_lang = "zh" encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt") generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en")) trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True) return trans_eng_text[0] title = """

🚀CHatGLM-6B - A Streaming Chatbot with Gradio

Enhance User Experience with Streaming and customizable Gradio Themes

""" header = """
Find on Huggingface at THUDM/chatglm-6b, and here on Github.
""" description = """ ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. However, due to the small size of ChatGLM-6B, it is currently known to have considerable limitations, such as factual/mathematical logic errors, possible generation of harmful/biased content, weak contextual ability, self-awareness confusion, and Generate content that completely contradicts Chinese instructions for English instructions. Please understand these issues before use to avoid misunderstandings. A larger ChatGLM based on the 130 billion parameter GLM-130B is under development in internal testing. """ theme = gr.themes.Default(#color contructors primary_hue="violet", secondary_hue="indigo", neutral_hue="purple").set(slider_color="#800080") with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;} #chatglm {height: 520px; overflow: auto;} """, theme=theme ) as demo: gr.HTML(title) gr.HTML(header) with gr.Column(): #(scale=10): with gr.Box(): with gr.Row(): with gr.Column(scale=8): inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " ) with gr.Column(scale=1): b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True) with gr.Column(scale=1): b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True) state_glm = gr.State([]) with gr.Box(): chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B') with gr.Accordion(label="Parameters for ChatGLM-6B", open=False): gr.HTML("Parameters for ChatGLM-6B", visible=True) top_p = gr.Slider(minimum=-0, maximum=1.0,value=1, step=0.05,interactive=True, label="Top-p", visible=True) temperature = gr.Slider(minimum=-0, maximum=5.0, value=1, step=0.1, interactive=True, label="Temperature", visible=True) inputs.submit( predict_glm_stream, [inputs, top_p, temperature, chatbot_glm ], [chatbot_glm],) inputs.submit(reset_textbox, [], [inputs]) b1.click( predict_glm_stream, [inputs, top_p, temperature, chatbot_glm ], [chatbot_glm],) b1.click(reset_textbox, [], [inputs]) b2.click(lambda: None, None, chatbot_glm, queue=False) gr.HTML('''
Duplicate SpaceDuplicate the Space and run securely with your OpenAI API Key
''') gr.Markdown(description) demo.queue(concurrency_count=16).launch(height= 800, debug=True)