Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,069 Bytes
129413a 42b930d 129413a 8f4c543 129413a a35571e 187265b dc2b319 187265b 72f2f88 05eceeb b7f3190 05eceeb 1beff8d 187265b fb7a592 1beff8d 96c2526 129413a b8480bb 129413a b8480bb 129413a fb7a592 ea86efe fb7a592 a3d1248 c1127b8 09e4eaf f33dc3d 09e4eaf f33dc3d 09e4eaf f33dc3d 09e4eaf 129413a 8f4c543 fb7a592 8f4c543 fb7a592 8f4c543 fb7a592 ea86efe fb7a592 8f4c543 ea86efe fb7a592 ea86efe ec73d16 ea86efe ec73d16 ea86efe fb7a592 8f4c543 ea86efe 8f4c543 ea86efe f98f623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import json
import gradio as gr
import os
import requests
hf_token = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
api_url_nostream = os.getenv('API_URL_NOSTREAM')
headers = {
'Content-Type': 'application/json',
}
system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
title = "Llama2 70B Chatbot"
description = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).
π For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
π¨ Looking for lighter chat model versions of Llama-v2?
- π Check out the [7B Chat model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).
- π¦ Check out the [13B Chat model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat).
Note: As a derivate work of [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/USE_POLICY.md).
"""
css = """.toast-wrap { display: none !important } """
examples=[
['Hello there! How are you doing?'],
['Can you explain to me briefly what is Python programming language?'],
['Explain the plot of Cinderella in a sentence.'],
['How many hours does it take a man to eat a Helicopter?'],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
]
# Stream text
def predict(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):
if system_prompt != "":
system_message = system_prompt
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n "
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "
input_prompt = input_prompt + str(message) + " [/INST] "
data = {
"inputs": input_prompt,
"parameters": {
"max_new_tokens":max_new_tokens,
"temperature":temperature,
"top_p":top_p,
"repetition_penalty":repetition_penalty,
"do_sample":True,
},
}
response = requests.post(api_url, headers=headers, data=json.dumps(data), auth=('hf', hf_token), stream=True)
partial_message = ""
for line in response.iter_lines():
if line: # filter out keep-alive new lines
# Decode from bytes to string
decoded_line = line.decode('utf-8')
# Remove 'data:' prefix
if decoded_line.startswith('data:'):
json_line = decoded_line[5:] # Exclude the first 5 characters ('data:')
else:
gr.Warning(f"This line does not start with 'data:': {decoded_line}")
continue
# Load as JSON
try:
json_obj = json.loads(json_line)
if 'token' in json_obj:
partial_message = partial_message + json_obj['token']['text']
yield partial_message
elif 'error' in json_obj:
yield json_obj['error'] + '. Please refresh and try again with an appropriate smaller input prompt.'
else:
gr.Warning(f"The key 'token' does not exist in this JSON object: {json_obj}")
except json.JSONDecodeError:
gr.Warning(f"This line is not valid JSON: {json_line}")
continue
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for JSON object: {json_obj}")
continue
# No Stream
def predict_batch(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):
if system_prompt != "":
system_message = system_prompt
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
input_prompt = f"[INST]<<SYS>>\n{system_message}\n<</SYS>>\n\n "
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "
input_prompt = input_prompt + str(message) + " [/INST] "
data = {
"inputs": input_prompt,
"parameters": {
"max_new_tokens":max_new_tokens,
"temperature":temperature,
"top_p":top_p,
"repetition_penalty":repetition_penalty,
"do_sample":True,
},
}
response = requests.post(api_url_nostream, headers=headers, data=json.dumps(data), auth=('hf', hf_token))
if response.status_code == 200: # check if the request was successful
try:
json_obj = response.json()
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
return json_obj['generated_text']
elif 'error' in json_obj:
return json_obj['error'] + ' Please refresh and try again with smaller input prompt'
else:
print(f"Unexpected response: {json_obj}")
except json.JSONDecodeError:
print(f"Failed to decode response as JSON: {response.text}")
else:
print(f"Request failed with status code {response.status_code}")
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
additional_inputs=[
gr.Textbox("", label="Optional system prompt"),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.6,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
chatbot_stream = gr.Chatbot(avatar_images=('user.png', 'bot2.png'),bubble_full_width = False)
chatbot_batch = gr.Chatbot(avatar_images=('user1.png', 'bot1.png'),bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(predict,
title=title,
description=description,
chatbot=chatbot_stream,
css=css,
examples=examples,
cache_examples=True,
additional_inputs=additional_inputs,)
chat_interface_batch = gr.ChatInterface(predict_batch,
title=title,
description=description,
chatbot=chatbot_batch,
css=css,
examples=examples,
cache_examples=True,
additional_inputs=additional_inputs,)
# Gradio Demo
with gr.Blocks() as demo:
with gr.Tab("Streaming"):
#gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,)
chatbot_stream.like(vote, None, None)
chat_interface_stream.render()
with gr.Tab("Batch"):
#gr.ChatInterface(predict_batch, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,)
chatbot_batch.like(vote, None, None)
chat_interface_batch.render()
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
|