File size: 9,069 Bytes
129413a
 
 
42b930d
129413a
 
8f4c543
 
129413a
 
 
 
 
a35571e
187265b
 
 
 
 
dc2b319
 
 
187265b
 
 
 
72f2f88
05eceeb
b7f3190
 
 
 
 
05eceeb
1beff8d
187265b
fb7a592
 
 
 
 
 
 
 
 
1beff8d
96c2526
129413a
b8480bb
129413a
b8480bb
129413a
 
 
fb7a592
 
ea86efe
 
 
fb7a592
 
a3d1248
c1127b8
09e4eaf
 
 
 
 
 
 
 
 
 
 
f33dc3d
09e4eaf
 
 
 
f33dc3d
 
 
 
 
 
 
 
 
09e4eaf
f33dc3d
 
 
 
09e4eaf
129413a
8f4c543
fb7a592
 
8f4c543
fb7a592
 
 
 
 
 
 
8f4c543
 
 
 
 
 
 
 
fb7a592
 
ea86efe
 
 
fb7a592
 
8f4c543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea86efe
 
 
 
 
 
fb7a592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea86efe
 
 
 
 
ec73d16
ea86efe
 
 
 
 
 
 
ec73d16
ea86efe
 
 
 
fb7a592
8f4c543
 
 
 
ea86efe
 
 
8f4c543
ea86efe
 
 
 
 
f98f623
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import json 
import gradio as gr
import os
import requests

hf_token = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
api_url_nostream = os.getenv('API_URL_NOSTREAM')
headers = {
    'Content-Type': 'application/json',
}

system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
title = "Llama2 70B Chatbot"
description = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).

πŸ”Ž For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).

πŸ”¨ Looking for lighter chat model versions of Llama-v2? 
- πŸ‡ Check out the [7B Chat model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).
- 🦊 Check out the [13B Chat model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat).

Note: As a derivate work of [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/USE_POLICY.md).
"""
css = """.toast-wrap { display: none !important } """
examples=[
    ['Hello there! How are you doing?'],
    ['Can you explain to me briefly what is Python programming language?'],
    ['Explain the plot of Cinderella in a sentence.'],
    ['How many hours does it take a man to eat a Helicopter?'],
    ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ]


# Stream text
def predict(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):

    if system_prompt != "":
        system_message = system_prompt
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n "
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    data = {
        "inputs": input_prompt,
        "parameters": {
            "max_new_tokens":max_new_tokens,
            "temperature":temperature,
            "top_p":top_p,
            "repetition_penalty":repetition_penalty, 
            "do_sample":True,
        },
    }
    response = requests.post(api_url, headers=headers, data=json.dumps(data), auth=('hf', hf_token), stream=True)
    
    partial_message = ""
    for line in response.iter_lines():
        if line:  # filter out keep-alive new lines
            # Decode from bytes to string
            decoded_line = line.decode('utf-8')

            # Remove 'data:' prefix 
            if decoded_line.startswith('data:'):
                json_line = decoded_line[5:]  # Exclude the first 5 characters ('data:')
            else:
                gr.Warning(f"This line does not start with 'data:': {decoded_line}")
                continue

            # Load as JSON
            try:
                json_obj = json.loads(json_line)
                if 'token' in json_obj:
                    partial_message = partial_message + json_obj['token']['text'] 
                    yield partial_message
                elif 'error' in json_obj:
                    yield json_obj['error'] + '. Please refresh and try again with an appropriate smaller input prompt.'
                else:
                    gr.Warning(f"The key 'token' does not exist in this JSON object: {json_obj}")

            except json.JSONDecodeError:
                gr.Warning(f"This line is not valid JSON: {json_line}")
                continue
            except KeyError as e:
                gr.Warning(f"KeyError: {e} occurred for JSON object: {json_obj}")
                continue


# No Stream    
def predict_batch(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):

    if system_prompt != "":
        system_message = system_prompt
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    input_prompt = f"[INST]<<SYS>>\n{system_message}\n<</SYS>>\n\n "
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    data = {
        "inputs": input_prompt,
        "parameters": {
            "max_new_tokens":max_new_tokens,
            "temperature":temperature,
            "top_p":top_p,
            "repetition_penalty":repetition_penalty, 
            "do_sample":True,
        },
    }

    response = requests.post(api_url_nostream, headers=headers, data=json.dumps(data), auth=('hf', hf_token))
    
    if response.status_code == 200:  # check if the request was successful
        try:
            json_obj = response.json()
            if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
                return json_obj['generated_text']
            elif 'error' in json_obj:
                return json_obj['error'] + ' Please refresh and try again with smaller input prompt'
            else:
                print(f"Unexpected response: {json_obj}")
        except json.JSONDecodeError:
            print(f"Failed to decode response as JSON: {response.text}")
    else:
        print(f"Request failed with status code {response.status_code}")


def vote(data: gr.LikeData):
    if data.liked:
        print("You upvoted this response: " + data.value)
    else:
        print("You downvoted this response: " + data.value)
        

additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=4096,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.6,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

chatbot_stream = gr.Chatbot(avatar_images=('user.png', 'bot2.png'),bubble_full_width = False)
chatbot_batch = gr.Chatbot(avatar_images=('user1.png', 'bot1.png'),bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(predict, 
                 title=title, 
                 description=description, 
                 chatbot=chatbot_stream,
                 css=css, 
                 examples=examples, 
                 cache_examples=True, 
                 additional_inputs=additional_inputs,) 
chat_interface_batch = gr.ChatInterface(predict_batch, 
                 title=title, 
                 description=description, 
                 chatbot=chatbot_batch,
                 css=css, 
                 examples=examples, 
                 cache_examples=True, 
                 additional_inputs=additional_inputs,) 

# Gradio Demo 
with gr.Blocks() as demo:

    with gr.Tab("Streaming"):
        #gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,) 
        chatbot_stream.like(vote, None, None)
        chat_interface_stream.render()

    with gr.Tab("Batch"):
        #gr.ChatInterface(predict_batch, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,) 
        chatbot_batch.like(vote, None, None)
        chat_interface_batch.render()
        
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)