Spaces:
Running
Running
import os | |
import gradio as gr | |
from gradio import ChatMessage | |
from typing import Iterator | |
import google.generativeai as genai | |
# get Gemini API Key from the environ variable | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
genai.configure(api_key=GEMINI_API_KEY) | |
# we will be using the Gemini 2.0 Flash model with Thinking capabilities | |
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219") | |
def format_chat_history(messages: list) -> list: | |
""" | |
Formats the chat history into a structure Gemini can understand | |
""" | |
formatted_history = [] | |
for message in messages: | |
# Skip thinking messages (messages with metadata) | |
if not (message.get("role") == "assistant" and "metadata" in message): | |
formatted_history.append({ | |
"role": "user" if message.get("role") == "user" else "assistant", | |
"parts": [message.get("content", "")] | |
}) | |
return formatted_history | |
def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]: | |
""" | |
Streams thoughts and response with conversation history support. | |
""" | |
try: | |
print(f"\n=== New Request ===") | |
print(f"User message: {user_message}") | |
# Format chat history for Gemini | |
chat_history = format_chat_history(messages) | |
# Initialize Gemini chat | |
chat = model.start_chat(history=chat_history) | |
response = chat.send_message(user_message, stream=True) | |
# Initialize buffers and flags | |
thought_buffer = "" | |
response_buffer = "" | |
thinking_complete = False | |
# Add initial thinking message | |
messages.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
) | |
for chunk in response: | |
parts = chunk.candidates[0].content.parts | |
current_chunk = parts[0].text | |
if len(parts) == 2 and not thinking_complete: | |
# Complete thought and start response | |
thought_buffer += current_chunk | |
print(f"\n=== Complete Thought ===\n{thought_buffer}") | |
messages[-1] = ChatMessage( | |
role="assistant", | |
content=thought_buffer, | |
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
yield messages | |
# Start response | |
response_buffer = parts[1].text | |
print(f"\n=== Starting Response ===\n{response_buffer}") | |
messages.append( | |
ChatMessage( | |
role="assistant", | |
content=response_buffer | |
) | |
) | |
thinking_complete = True | |
elif thinking_complete: | |
# Stream response | |
response_buffer += current_chunk | |
print(f"\n=== Response Chunk ===\n{current_chunk}") | |
messages[-1] = ChatMessage( | |
role="assistant", | |
content=response_buffer | |
) | |
else: | |
# Stream thinking | |
thought_buffer += current_chunk | |
print(f"\n=== Thinking Chunk ===\n{current_chunk}") | |
messages[-1] = ChatMessage( | |
role="assistant", | |
content=thought_buffer, | |
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
yield messages | |
print(f"\n=== Final Response ===\n{response_buffer}") | |
except Exception as e: | |
print(f"\n=== Error ===\n{str(e)}") | |
messages.append( | |
ChatMessage( | |
role="assistant", | |
content=f"I apologize, but I encountered an error: {str(e)}" | |
) | |
) | |
yield messages | |
def user_message(msg: str, history: list) -> tuple[str, list]: | |
"""Adds user message to chat history""" | |
history.append(ChatMessage(role="user", content=msg)) | |
return "", history | |
# Create the Gradio interface | |
with gr.Blocks(theme=gr.themes.Citrus(), fill_height=True) as demo: | |
#with gr.Column(): | |
gr.Markdown("# Chat with Gemini 2.0 Flash and See its Thoughts π") | |
chatbot = gr.Chatbot( | |
type="messages", | |
label="Gemini2.0 'Thinking' Chatbot", | |
render_markdown=True, | |
scale=1, | |
avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu") | |
) | |
with gr.Row(equal_height=True): | |
input_box = gr.Textbox( | |
lines=1, | |
label="Chat Message", | |
placeholder="Type your message here...", | |
scale=4 | |
) | |
clear_button = gr.Button("Clear Chat", scale=1) | |
# Set up event handlers | |
msg_store = gr.State("") # Store for preserving user message | |
input_box.submit( | |
lambda msg: (msg, msg, ""), # Store message and clear input | |
inputs=[input_box], | |
outputs=[msg_store, input_box, input_box], | |
queue=False | |
).then( | |
user_message, # Add user message to chat | |
inputs=[msg_store, chatbot], | |
outputs=[input_box, chatbot], | |
queue=False | |
).then( | |
stream_gemini_response, # Generate and stream response | |
inputs=[msg_store, chatbot], | |
outputs=chatbot | |
) | |
clear_button.click( | |
lambda: ([], "", ""), | |
outputs=[chatbot, input_box, msg_store], | |
queue=False | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch(debug=True) |