ysharma HF staff commited on
Commit
a58f9b6
1 Parent(s): 76d05cb

update desc

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -30,22 +30,21 @@ def predict(inputs, top_p, temperature, top_k, repetition_penalty, history=[]):
30
  }
31
 
32
  history.append(inputs)
 
33
  response = requests.post(API_URL, headers=headers, json=payload, stream=True)
34
  token_counter = 0
35
- partial_words = "" #inputs
 
36
  for chunk in response.iter_lines():
 
37
  if chunk:
38
- #print(chunk.decode())
39
  partial_words = partial_words + json.loads(chunk.decode()[5:])['token']['text']
40
- #print(partial_words)
41
- time.sleep(0.05)
42
- #print([(partial_words, "")])
43
  if token_counter == 0:
44
  history.append(" " + partial_words)
45
  else:
46
  history[-1] = partial_words
47
  chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
48
- #yield [(partial_words, history)]
49
  token_counter+=1
50
  yield chat, history #{chatbot: chat, state: history} #[(partial_words, history)]
51
 
@@ -59,7 +58,7 @@ User: <utterance>
59
  Assistant: <utterance>
60
  ...
61
  ```
62
- In this app, you can explore the outputs of a large language models.
63
  """
64
 
65
  with gr.Blocks(css = "#chatbot {height: 400px; overflow: auto;}") as demo:
@@ -83,4 +82,3 @@ with gr.Blocks(css = "#chatbot {height: 400px; overflow: auto;}") as demo:
83
 
84
  gr.Markdown(description)
85
  demo.queue().launch(debug=True)
86
-
 
30
  }
31
 
32
  history.append(inputs)
33
+ # make a POST request to the API endpoint using the requests.post method, passing in stream=True
34
  response = requests.post(API_URL, headers=headers, json=payload, stream=True)
35
  token_counter = 0
36
+ partial_words = ""
37
+ # loop over the response data using the iter_lines method of the response object
38
  for chunk in response.iter_lines():
39
+ # check whether each line is non-empty
40
  if chunk:
41
+ # decode each line as response data is in bytes
42
  partial_words = partial_words + json.loads(chunk.decode()[5:])['token']['text']
 
 
 
43
  if token_counter == 0:
44
  history.append(" " + partial_words)
45
  else:
46
  history[-1] = partial_words
47
  chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
 
48
  token_counter+=1
49
  yield chat, history #{chatbot: chat, state: history} #[(partial_words, history)]
50
 
 
58
  Assistant: <utterance>
59
  ...
60
  ```
61
+ In this app, you can explore the outputs of a 20B large language model.
62
  """
63
 
64
  with gr.Blocks(css = "#chatbot {height: 400px; overflow: auto;}") as demo:
 
82
 
83
  gr.Markdown(description)
84
  demo.queue().launch(debug=True)