import pandas as pd import gradio as gr URL = "https://docs.google.com/spreadsheets/d/1qFJ7N4yubNyq7BBvLiNFcgpyWFV66wDGCa48axGNp_c/edit?usp=sharing" csv_url = URL.replace('/edit?usp=', '/export?format=csv&usp=') def get_data(): df = pd.read_csv(csv_url) df['Tweet Volume'] = df['Tweet Volume'].str[:-1] df['Tweet Volume'] = df['Tweet Volume'].transform( lambda x: x[-2:] if 'Under' in x else x) df['Trending Topic / Hashtag'] = df['Trending Topic / Hashtag'].transform( lambda x: x.split()[0]) df["Tweet Volume"] = pd.to_numeric(df["Tweet Volume"]) df = df.sort_values(by=['Tweet Volume'], ascending=False) return df[["Trending Topic / Hashtag", "Tweet Volume"]][:15] with gr.Blocks() as demo: gr.Markdown("# 📈 Twitter Trends - United States using Real-Time Line and Scatter Plot") gr.Markdown("Following are the current top twitter trending topics in United States, Trends last updated every 30 minutes !") with gr.Row(): gr.LinePlot(get_data, x="Trending Topic / Hashtag", y="Tweet Volume", tooltip=["Trending Topic / Hashtag","Tweet Volume"] , every=5, overlay_point=True, width=500, height=500, title='Real-Time Line Plot') gr.ScatterPlot(get_data, y="Tweet Volume", x="Trending Topic / Hashtag", tooltip=["Trending Topic / Hashtag","Tweet Volume"] , every=5, width=500, height=500, title='Real-Time Scatter Plot') with gr.Row(): gr.DataFrame(get_data, every=5) demo.queue().launch() # Run the demo with queuing enabled