File size: 9,393 Bytes
e50e0dc 0ae354e e50e0dc 5a19e34 3753259 e50e0dc 51c1138 e50e0dc 51c1138 e50e0dc f1dc0ca e50e0dc abb4bd0 e50e0dc abb4bd0 e50e0dc abb4bd0 c72df7c e50e0dc 2719319 c72df7c e02092b c72df7c e02092b c72df7c e02092b c72df7c e02092b c72df7c f1dc0ca e50e0dc f1dc0ca 1d8c32a f1dc0ca 2526304 2915c8f 80a64d7 073aa56 f1dc0ca c72df7c f1dc0ca e50e0dc c9f7d28 f1dc0ca 03a69e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import gradio as gr
import whisper
import requests
import tempfile
from neon_tts_plugin_coqui import CoquiTTS
# Language common in all three multilingual models - English, Chinese, Spanish, and French
# So it would make sense to test the App on these four prominently
# Whisper: Speech-to-text
model = whisper.load_model("base")
model_med = whisper.load_model("medium")
# Languages covered in Whisper - (exhaustive list) :
#"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian",
#"ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish",
#"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish",
#"it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese",
#"iw": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech",
#"ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian",
#"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian",
#"la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak",
#"te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian",
#"az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian",
#"mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian",
#"ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian",
#"sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala",
#"km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans",
#"oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi",
#"gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek",
#"fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk",
#"mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan",
#"tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian",
#"ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese",
# LLM : Bloom as inference
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Main Languages covered in Bloom are (not exhaustive list):
# English, Chinese, French, Spanish, Portuguese, Arabic, Hindi, Vietnamese, Indonesian, Bengali, Tamil, Telugu
# Text-to-Speech
LANGUAGES = list(CoquiTTS.langs.keys())
coquiTTS = CoquiTTS()
print(f"Languages for Coqui are: {LANGUAGES}")
#Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']
# en - Engish, es - Spanish, fr - French, de - German, pl - Polish
# uk - Ukrainian, ro - Romanian, hu - Hungarian, el - Greek, bg - Bulgarian,
# nl - dutch, fi - finnish, sl - slovenian, lv - latvian, ga - ??
# Driver function
def driver_fun(audio) :
transcribe, translation, lang = whisper_stt(audio)
#text1 = model.transcribe(audio)["text"]
#For now only taking in English text for Bloom prompting as inference model is not high spec
text_generated = lang_model_response(transcribe, lang)
text_generated_en = lang_model_response(translation, 'en')
if lang in ['es', 'fr']:
speech = tts(text_generated, lang)
else:
speech = tts(text_generated_en, 'en') #'en')
return transcribe, translation, text_generated, text_generated_en, speech
# Whisper - speech-to-text
def whisper_stt(audio):
print("Inside Whisper TTS")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang
options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang
result_transc = whisper.decode(model_med, mel, options_transc)
result_transl = whisper.decode(model_med, mel, options_transl)
# print the recognized text
print(f"transcript is : {result_transc.text}")
print(f"translation is : {result_transl.text}")
return result_transc.text, result_transl.text, lang
# LLM - Bloom Response
def lang_model_response(prompt, language):
print(f"Inside lang_model_response - Prompt is :{prompt}")
p_en = """Question: How are you doing today?
Answer: I am doing good, thanks.
Question: """
p_es = """Pregunta: Cómo estás hoy?
Responder: Estoy bien, gracias.
Pregunta: """
p_fr = """Question: Comment vas-tu aujourd'hui?
Réponse: Je vais bien, merci.
Question: """
if len(prompt) == 0:
prompt = """Question: Can you help me please?
Answer: Sure, I am here for you.
Question: """
if language == 'en':
prompt = p_en + prompt + "\n" + "Answer: "
elif language == 'es':
prompt = p_es + prompt + "\n" + "Responder: "
elif language == 'fr':
prompt = p_fr + prompt + "\n" + "Réponse: "
#else:
json_ = {"inputs": prompt,
"parameters":
{
"top_p": 0.90, #0.90 default
"max_new_tokens": 64,
"temperature": 1.1, #1.1 default
"return_full_text": False,
"do_sample": True,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
#print(f"Response is : {response}")
output = response.json()
output_tmp = output[0]['generated_text']
print(f"Bloom API Response is : {output_tmp}")
if language == 'en':
solution = output_tmp.split("Answer: ")[2].split("\n")[0]
elif language == 'es':
solution = output_tmp.split("Responder: ")[2].split("\n")[0]
elif language == 'fr':
solution = output_tmp.split("Réponse: ")[2].split("\n")[0]
else:
if '?' in output_tmp:
solution = output_tmp.split("?")[0]
elif '.' in output_tmp:
solution = output_tmp.split(".")[0]
elif ',' in output_tmp:
solution = output_tmp.split(",")[0]
else:
solution = output_tmp #[:10]
print(f"Another language was used : {language}")
# solution = output_tmp.split(".")[1]
print(f"Final Bloom Response after splits is: {solution}")
return solution
# Coqui - Text-to-Speech
def tts(text, language):
print(f"Inside tts - language is : {language}")
coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga']
if language not in coqui_langs:
language = 'en'
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
coquiTTS.get_tts(text, fp, speaker = {"language" : language})
return fp.name
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Talk to Your Multilingual AI Assistant</center></h1>")
gr.Markdown(
"""Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper)for Speech-to-text, <br>- [**Bloom**](https://huggingface.co/bigscience/bloom) for Text-generation, and <br>- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech. <br><br> Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).<br>All three models are Multilingual, however, there are only these three overlapping languages among them - <u>Spanish (es), French(fr), and English(en). Hence it would be suggested to test this ML-App using these three languages to get the best results</u>. If an English voice input is given then both the textbox on the left-hand side would show the same transcripts. However, if the input is either in _Spanish_ or _French_, then the first textbox would show the language transcript, while the next one would show its English translations.<br>If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again!
""")
with gr.Row():
with gr.Column():
in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice here in English, Spanish or French for best results-') #type='filepath'
b1 = gr.Button("AI response pipeline (Whisper - Bloom - Coqui pipeline)")
out_transcript = gr.Textbox(label= 'English/Spanish/French Transcript of your Audio using OpenAI Whisper')
out_translation_en = gr.Textbox(label= 'English Translation of audio using OpenAI Whisper')
with gr.Column():
out_audio = gr.Audio(label='AI response in Audio form in your language - This will be either in Spanish, or in French or in English for all other languages -')
out_generated_text = gr.Textbox(label= 'AI response to your query in your preferred language using Bloom! ')
out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ')
b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_translation_en, out_generated_text,out_generated_text_en, out_audio])
demo.launch(enable_queue=True, debug=True) |