File size: 10,627 Bytes
cfa3979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import annotations

from dataclasses import dataclass
from diffusers import StableDiffusionXLPipeline
import torch
import torch.nn as nn
from torch.nn import functional as nnf
from diffusers.models import attention_processor
import einops

T = torch.Tensor


@dataclass(frozen=True)
class StyleAlignedArgs:
    share_group_norm: bool = True
    share_layer_norm: bool = True,
    share_attention: bool = True
    adain_queries: bool = True
    adain_keys: bool = True
    adain_values: bool = False
    full_attention_share: bool = False
    keys_scale: float = 1.
    only_self_level: float = 0.


def expand_first(feat: T, scale=1., ) -> T:
    b = feat.shape[0]
    feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
    if scale == 1:
        feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
    else:
        feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
        feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
    return feat_style.reshape(*feat.shape)


def concat_first(feat: T, dim=2, scale=1.) -> T:
    feat_style = expand_first(feat, scale=scale)
    return torch.cat((feat, feat_style), dim=dim)


def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
    feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
    feat_mean = feat.mean(dim=-2, keepdims=True)
    return feat_mean, feat_std


def adain(feat: T) -> T:
    feat_mean, feat_std = calc_mean_std(feat)
    feat_style_mean = expand_first(feat_mean)
    feat_style_std = expand_first(feat_std)
    feat = (feat - feat_mean) / feat_std
    feat = feat * feat_style_std + feat_style_mean
    return feat


class DefaultAttentionProcessor(nn.Module):

    def __init__(self):
        super().__init__()
        self.processor = attention_processor.AttnProcessor2_0()

    def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
                 attention_mask=None, **kwargs):
        return self.processor(attn, hidden_states, encoder_hidden_states, attention_mask)


class SharedAttentionProcessor(DefaultAttentionProcessor):

    def shared_call(
            self,
            attn: attention_processor.Attention,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            **kwargs
    ):

        residual = hidden_states
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        # if self.step >= self.start_inject:
        if self.adain_queries:
            query = adain(query)
        if self.adain_keys:
            key = adain(key)
        if self.adain_values:
            value = adain(value)
        if self.share_attention:
            key = concat_first(key, -2, scale=self.keys_scale)
            value = concat_first(value, -2)
            hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
        else:
            hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
        # hidden_states = adain(hidden_states)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor
        return hidden_states

    def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
                 attention_mask=None, **kwargs):
        if self.full_attention_share:
            b, n, d = hidden_states.shape
            hidden_states = einops.rearrange(hidden_states, '(k b) n d -> k (b n) d', k=2)
            hidden_states = super().__call__(attn, hidden_states, encoder_hidden_states=encoder_hidden_states,
                                             attention_mask=attention_mask, **kwargs)
            hidden_states = einops.rearrange(hidden_states, 'k (b n) d -> (k b) n d', n=n)
        else:
            hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs)

        return hidden_states

    def __init__(self, style_aligned_args: StyleAlignedArgs):
        super().__init__()
        self.share_attention = style_aligned_args.share_attention
        self.adain_queries = style_aligned_args.adain_queries
        self.adain_keys = style_aligned_args.adain_keys
        self.adain_values = style_aligned_args.adain_values
        self.full_attention_share = style_aligned_args.full_attention_share
        self.keys_scale = style_aligned_args.keys_scale


def _get_switch_vec(total_num_layers, level):
    if level == 0:
        return torch.zeros(total_num_layers, dtype=torch.bool)
    if level == 1:
        return torch.ones(total_num_layers, dtype=torch.bool)
    to_flip = level > .5
    if to_flip:
        level = 1 - level
    num_switch = int(level * total_num_layers)
    vec = torch.arange(total_num_layers)
    vec = vec % (total_num_layers // num_switch)
    vec = vec == 0
    if to_flip:
        vec = ~vec
    return vec


def init_attention_processors(pipeline: StableDiffusionXLPipeline, style_aligned_args: StyleAlignedArgs | None = None):
    attn_procs = {}
    unet = pipeline.unet
    number_of_self, number_of_cross = 0, 0
    num_self_layers = len([name for name in unet.attn_processors.keys() if 'attn1' in name])
    if style_aligned_args is None:
        only_self_vec = _get_switch_vec(num_self_layers, 1)
    else:
        only_self_vec = _get_switch_vec(num_self_layers, style_aligned_args.only_self_level)
    for i, name in enumerate(unet.attn_processors.keys()):
        is_self_attention = 'attn1' in name
        if is_self_attention:
            number_of_self += 1
            if style_aligned_args is None or only_self_vec[i // 2]:
                attn_procs[name] = DefaultAttentionProcessor()
            else:
                attn_procs[name] = SharedAttentionProcessor(style_aligned_args)

        else:
            number_of_cross += 1
            attn_procs[name] = DefaultAttentionProcessor()

    unet.set_attn_processor(attn_procs)


def register_shared_norm(pipeline: StableDiffusionXLPipeline,
                         share_group_norm: bool = True,
                         share_layer_norm: bool = True, ):
    def register_norm_forward(norm_layer: nn.GroupNorm | nn.LayerNorm) -> nn.GroupNorm | nn.LayerNorm:
        if not hasattr(norm_layer, 'orig_forward'):
            setattr(norm_layer, 'orig_forward', norm_layer.forward)
        orig_forward = norm_layer.orig_forward

        def forward_(hidden_states: T) -> T:
            n = hidden_states.shape[-2]
            hidden_states = concat_first(hidden_states, dim=-2)
            hidden_states = orig_forward(hidden_states)
            return hidden_states[..., :n, :]

        norm_layer.forward = forward_
        return norm_layer

    def get_norm_layers(pipeline_, norm_layers_: dict[str, list[nn.GroupNorm | nn.LayerNorm]]):
        if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm:
            norm_layers_['layer'].append(pipeline_)
        if isinstance(pipeline_, nn.GroupNorm) and share_group_norm:
            norm_layers_['group'].append(pipeline_)
        else:
            for layer in pipeline_.children():
                get_norm_layers(layer, norm_layers_)

    norm_layers = {'group': [], 'layer': []}
    get_norm_layers(pipeline.unet, norm_layers)
    return [register_norm_forward(layer) for layer in norm_layers['group']] + [register_norm_forward(layer) for layer in
                                                                               norm_layers['layer']]


class Handler:

    def register(self, style_aligned_args: StyleAlignedArgs, ):
        self.norm_layers = register_shared_norm(self.pipeline, style_aligned_args.share_group_norm,
                                                style_aligned_args.share_layer_norm)
        init_attention_processors(self.pipeline, style_aligned_args)

    def remove(self):
        for layer in self.norm_layers:
            layer.forward = layer.orig_forward
        self.norm_layers = []
        init_attention_processors(self.pipeline, None)

    def __init__(self, pipeline: StableDiffusionXLPipeline):
        self.pipeline = pipeline
        self.norm_layers = []