Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
-
from diffusers import
|
|
|
|
|
3 |
import torch
|
4 |
import mediapy
|
5 |
import sa_handler
|
|
|
|
|
|
|
6 |
|
7 |
# init models
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
handler = sa_handler.Handler(pipeline)
|
16 |
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
|
17 |
share_layer_norm=False,
|
18 |
share_attention=True,
|
@@ -20,10 +38,42 @@ sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
|
|
20 |
adain_keys=True,
|
21 |
adain_values=False,
|
22 |
)
|
23 |
-
|
24 |
handler.register(sa_args, )
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# run StyleAligned
|
28 |
sets_of_prompts = [
|
29 |
"a toy train. macro photo. 3d game asset",
|
@@ -33,20 +83,21 @@ sets_of_prompts = [
|
|
33 |
"a toy boat. macro photo. 3d game asset",
|
34 |
]
|
35 |
|
36 |
-
def style_aligned_sdxl(prompt):
|
37 |
-
images = pipeline([prompts],).images
|
38 |
-
#mediapy.show_images(images)
|
39 |
-
print(images)
|
40 |
-
return images
|
41 |
|
42 |
with gr.Blocks() as demo:
|
43 |
-
with gr.
|
44 |
-
with gr.
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
demo.launch()
|
52 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
3 |
+
from diffusers.utils import load_image
|
4 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
5 |
import torch
|
6 |
import mediapy
|
7 |
import sa_handler
|
8 |
+
import pipeline_calls
|
9 |
+
|
10 |
+
|
11 |
|
12 |
# init models
|
13 |
+
|
14 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
15 |
+
feature_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
16 |
+
|
17 |
+
controlnet = ControlNetModel.from_pretrained(
|
18 |
+
"diffusers/controlnet-depth-sdxl-1.0",
|
19 |
+
variant="fp16",
|
20 |
+
use_safetensors=True,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
).to("cuda")
|
23 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
24 |
+
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
|
25 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
26 |
+
controlnet=controlnet,
|
27 |
+
vae=vae,
|
28 |
+
variant="fp16",
|
29 |
+
use_safetensors=True,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
).to("cuda")
|
32 |
+
pipeline.enable_model_cpu_offload()
|
33 |
|
|
|
34 |
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
|
35 |
share_layer_norm=False,
|
36 |
share_attention=True,
|
|
|
38 |
adain_keys=True,
|
39 |
adain_values=False,
|
40 |
)
|
41 |
+
handler = sa_handler.Handler(pipeline)
|
42 |
handler.register(sa_args, )
|
43 |
|
44 |
|
45 |
+
# get depth maps
|
46 |
+
def get_depth_maps(image):
|
47 |
+
image = load_image(image) #("./example_image/train.png")
|
48 |
+
depth_image1 = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator)
|
49 |
+
#depth_image2 = load_image("./example_image/sun.png").resize((1024, 1024))
|
50 |
+
#mediapy.show_images([depth_image1, depth_image2])
|
51 |
+
return depth_image1 #[depth_image1, depth_image2]
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
# run ControlNet depth with StyleAligned
|
56 |
+
def style_aligned_controlnet(reference_prompt, target_prompt, image)
|
57 |
+
#reference_prompt = "a poster in flat design style"
|
58 |
+
#target_prompts = [target_prompts] #["a train in flat design style", "the sun in flat design style"]
|
59 |
+
controlnet_conditioning_scale = 0.8
|
60 |
+
num_images_per_prompt = 1 # adjust according to VRAM size
|
61 |
+
depth_map = get_depth_maps(image)
|
62 |
+
latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)
|
63 |
+
#for deph_map, target_prompt in zip((depth_image1, depth_image2), target_prompts):
|
64 |
+
latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)
|
65 |
+
images = pipeline_calls.controlnet_call(pipeline, [reference_prompt, target_prompt],
|
66 |
+
image=deph_map,
|
67 |
+
num_inference_steps=50,
|
68 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
69 |
+
num_images_per_prompt=num_images_per_prompt,
|
70 |
+
latents=latents)
|
71 |
+
print(f"images -{images}")
|
72 |
+
return images[0]
|
73 |
+
|
74 |
+
#mediapy.show_images([images[0], deph_map] + images[1:], titles=["reference", "depth"] + [f'result {i}' for i in range(1, len(images))])
|
75 |
+
|
76 |
+
|
77 |
# run StyleAligned
|
78 |
sets_of_prompts = [
|
79 |
"a toy train. macro photo. 3d game asset",
|
|
|
83 |
"a toy boat. macro photo. 3d game asset",
|
84 |
]
|
85 |
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
with gr.Blocks() as demo:
|
88 |
+
with gr.Row(variant='panel'):
|
89 |
+
with gr.Group():
|
90 |
+
gr.Markdown("### <center>Reference Prompt and Image</center>")
|
91 |
+
ref_prompt = gr.Textbox(label="Enter a Prompt describing the reference image", placeholder='a photo of <object> in <style name> style')
|
92 |
+
depth_map = gr.Image(label="Upload the image to get Depth Map", )
|
93 |
+
with gr.Group():
|
94 |
+
gr.Markdown("### <center>Prompt for generation and generated Image</center>")
|
95 |
+
prompt = gr.Textbox(label="Enter a Prompt", placeholder='a photo of <object> in <style name> style')
|
96 |
+
output = gr.Image(label="Style-Aligned ControlNet",type='pil')
|
97 |
+
btn = gr.Button("Generate", size='sm')
|
98 |
+
|
99 |
+
btn.click(fn=greet, inputs=[ref_prompt, prompt, depth_map], outputs=output, api_name="style_aligned_controlnet")
|
100 |
+
|
101 |
|
102 |
demo.launch()
|
103 |
|