import gradio as gr from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image from transformers import DPTImageProcessor, DPTForDepthEstimation import torch import mediapy import sa_handler import pipeline_calls # init models depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") feature_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-depth-sdxl-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") pipeline.enable_model_cpu_offload() sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False, share_layer_norm=False, share_attention=True, adain_queries=True, adain_keys=True, adain_values=False, ) handler = sa_handler.Handler(pipeline) handler.register(sa_args, ) # get depth maps def get_depth_maps(image): image = load_image(image) #("./example_image/train.png") depth_image1 = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator) #depth_image2 = load_image("./example_image/sun.png").resize((1024, 1024)) #mediapy.show_images([depth_image1, depth_image2]) return depth_image1 #[depth_image1, depth_image2] # run ControlNet depth with StyleAligned def style_aligned_controlnet(reference_prompt, target_prompt, image): #reference_prompt = "a poster in flat design style" #target_prompts = [target_prompts] #["a train in flat design style", "the sun in flat design style"] controlnet_conditioning_scale = 0.8 num_images_per_prompt = 1 # adjust according to VRAM size depth_map = get_depth_maps(image) latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype) #for deph_map, target_prompt in zip((depth_image1, depth_image2), target_prompts): latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype) images = pipeline_calls.controlnet_call(pipeline, [reference_prompt, target_prompt], image=deph_map, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, num_images_per_prompt=num_images_per_prompt, latents=latents) print(f"images -{images}") return images[0] #mediapy.show_images([images[0], deph_map] + images[1:], titles=["reference", "depth"] + [f'result {i}' for i in range(1, len(images))]) with gr.Blocks() as demo: with gr.Row(variant='panel'): with gr.Group(): gr.Markdown("###