Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,166 Bytes
4193d7b 97142d9 a899a6a a07a300 266275c 4193d7b 7f51798 edd85ab 7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import os
import subprocess
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit() # to compile the dependencies
os.system('pip install ./submodules/simple-knn')
os.system('pip install ./submodules/diff-surfel-rasterization')
# import simple_knn
# import diff_surfel_rasterization
import argparse
import spaces
import json
import sys
sys.path.append('.')
import torch
import torchvision
from torchvision import transforms
import numpy as np
import os
import gc
import dnnlib
from omegaconf import OmegaConf
from PIL import Image
from dnnlib.util import EasyDict
import gradio as gr
import rembg
from huggingface_hub import hf_hub_download
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
from pdb import set_trace as st
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
continuous_diffusion_defaults,
control_net_defaults,
)
th.backends.cuda.matmul.allow_tf32 = True
th.backends.cudnn.allow_tf32 = True
th.backends.cudnn.enabled = True
from pathlib import Path
from tqdm import tqdm, trange
import dnnlib
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults
from datasets.shapenet import load_eval_data
from torch.utils.data import Subset
from datasets.eg3d_dataset import init_dataset_kwargs
from transport.train_utils import parse_transport_args
from utils.infer_utils import remove_background, resize_foreground
SEED = 0
def resize_to_224(img):
img = transforms.functional.resize(img, 518, # required by dino.
interpolation=transforms.InterpolationMode.LANCZOS)
return img
def set_white_background(image):
image = np.array(image).astype(np.float32) / 255.0
mask = image[:, :, 3:4]
image = image[:, :, :3] * mask + (1 - mask)
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def main(args_1, args_2):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
# args.rendering_kwargs = rendering_options_defaults(args)
dist_util.setup_dist(args_1)
logger.configure(dir=args_1.logdir)
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
# * set denoise model args
logger.log("creating model and diffusion...")
args_1.img_size = [args_1.image_size_encoder]
args_1.image_size = args_1.image_size_encoder # 224, follow the triplane size
args_2.img_size = [args_2.image_size_encoder]
args_2.image_size = args_2.image_size_encoder # 224, follow the triplane size
denoise_model_stage1, diffusion = create_model_and_diffusion(
**args_to_dict(args_1,
model_and_diffusion_defaults().keys()))
denoise_model_stage2, diffusion = create_model_and_diffusion(
**args_to_dict(args_2,
model_and_diffusion_defaults().keys()))
opts = eg3d_options_default()
denoise_model_stage1.to(dist_util.dev())
denoise_model_stage1.eval()
denoise_model_stage2.to(dist_util.dev())
denoise_model_stage2.eval()
# * auto-encoder reconstruction model
logger.log("creating 3DAE...")
auto_encoder = create_3DAE_model(
**args_to_dict(args_1,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(dist_util.dev())
auto_encoder.eval()
# faster inference
# denoise_model = denoise_model.to(th.bfloat16)
# auto_encoder = auto_encoder.to(th.bfloat16)
# TODO, how to set the scale?
logger.log("create dataset")
if args_1.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
# load data if i23d
# if args.i23d:
# data = load_eval_data(
# file_path=args.eval_data_dir,
# batch_size=args.eval_batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# load_depth=True, # for evaluation
# preprocess=auto_encoder.preprocess,
# **args_to_dict(args,
# dataset_defaults().keys()))
# else:
data = None # t23d sampling, only caption required
TrainLoop = {
'flow_matching':
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine,
'flow_matching_gs':
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine_gs, # slightly modified sampling and rendering for gs
}[args_1.trainer_name]
# continuous
sde_diffusion = None
auto_encoder.decoder.rendering_kwargs = args_1.rendering_kwargs
# stage_1_output_dir = args_2.stage_1_output_dir
training_loop_class_stage1 = TrainLoop(rec_model=auto_encoder,
denoise_model=denoise_model_stage1,
control_model=None, # to remove
diffusion=diffusion,
sde_diffusion=sde_diffusion,
loss_class=None,
data=data,
eval_data=None,
**args_1)
training_loop_class_stage2 = TrainLoop(rec_model=auto_encoder,
denoise_model=denoise_model_stage2,
control_model=None, # to remove
diffusion=diffusion,
sde_diffusion=sde_diffusion,
loss_class=None,
data=data,
eval_data=None,
**args_2)
css = """
h1 {
text-align: center;
display:block;
}
"""
def preprocess(input_image, preprocess_background=True, foreground_ratio=0.85):
if preprocess_background:
rembg_session = rembg.new_session()
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = set_white_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = set_white_background(image)
image = resize_to_224(image)
return image
@spaces.GPU(duration=50)
def cascaded_generation(processed_image, seed, cfg_scale):
# gc.collect()
# stage-1, generate pcd
stage_1_pcd = training_loop_class_stage1.eval_i23d_and_export_gradio(processed_image, seed, cfg_scale)
# stage-2, generate surfel Gaussians, tsdf mesh etc.
video_path, rgb_xyz_path, post_mesh_path = training_loop_class_stage2.eval_i23d_and_export_gradio(processed_image, seed, cfg_scale)
return video_path, rgb_xyz_path, post_mesh_path, stage_1_pcd
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
**GaussianAnything (arXiv 2024)** [[code](https://github.com/NIRVANALAN/GaussianAnything), [project page](https://nirvanalan.github.io/projects/GA/)] is a native 3D diffusion model that supports high-quality 2D Gaussians generation.
It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact point cloud-structured latent.
After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
The model used in the demo adopts 3D DiT architecture and flow-matching framework, and supports single-image condition.
It is trained on 8 A100 GPUs for 1M iterations with batch size 256.
Locally, on an NVIDIA A100/A10 GPU, each image-conditioned diffusion generation can be done within 20 seconds (time varies due to the adaptive-step ODE solver used in flow-mathcing.)
Upload an image of an object or click on one of the provided examples to see how the GaussianAnything works.
The 3D viewer will render a .glb point cloud exported from the centers of the surfel Gaussians, and an integrated TSDF mesh.
For best results run the demo locally and render locally - to do so, clone the [main repository](https://github.com/NIRVANALAN/GaussianAnything).
"""
)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(label="Processed Image", interactive=False)
# params
with gr.Row():
with gr.Column():
with gr.Row():
# with gr.Group():
cfg_scale = gr.Number(
label="CFG-scale", value=4.0, interactive=True,
)
seed = gr.Number(
label="Seed", value=42, interactive=True,
)
# num_steps = gr.Number(
# label="ODE Sampling Steps", value=250, interactive=True,
# )
# with gr.Column():
# with gr.Row():
# mesh_size = gr.Number(
# label="Mesh Resolution", value=192, interactive=True,
# )
# mesh_thres = gr.Number(
# label="Mesh Iso-surface", value=10, interactive=True,
# )
with gr.Row():
with gr.Group():
preprocess_background = gr.Checkbox(
label="Remove Background", value=False
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
str(path) for path in sorted(Path('./assets/demo-image-for-i23d/instantmesh').glob('**/*.png'))
] + [str(path) for path in sorted(Path('./assets/demo-image-for-i23d/gso').glob('**/*.png'))],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Column():
with gr.Row():
with gr.Tab("Stage-2 Output"):
with gr.Column():
output_video = gr.Video(value=None, width=512, label="Rendered Video (2 LoDs)", autoplay=True, loop=True)
# output_video = gr.Video(value=None, width=256, label="Rendered Video", autoplay=True)
output_gs = gr.Model3D(
height=256,
label="2DGS Center",
pan_speed=0.5,
clear_color=(1,1,1,1), # loading glb file only.
)
output_model = gr.Model3D(
height=256,
label="TSDF Mesh",
pan_speed=0.5,
clear_color=(1,1,1,1), # loading tsdf ply files.
)
with gr.Tab("Stage-1 Output"):
with gr.Column():
output_model_stage1 = gr.Model3D(
height=256,
label="Stage-1",
pan_speed=0.5,
clear_color=(1,1,1,1), # loading tsdf ply files.
)
gr.Markdown(
"""
## Comments:
1. The sampling time varies since ODE-based sampling method (dopri5 by default) has adaptive internal step, and reducing sampling steps may not reduce the overal sampling time. Sampling steps=250 is the emperical value that works well in most cases.
2. The 3D viewer shows a colored .glb mesh extracted from volumetric tri-plane, and may differ slightly with the volume rendering result.
3. If you find your result unsatisfying, tune the CFG scale and change the random seed. Usually slightly increase the CFG value can lead to better performance.
3. Known limitations include:
- Texture details missing: since our VAE is trained on 192x192 resolution due the the resource constraints, the texture details generated by the final 3D-LDM may be blurry. We will keep improving the performance in the future.
4. Regarding reconstruction performance, our model is slightly inferior to state-of-the-art multi-view LRM-based method (e.g. InstantMesh), but offers much better diversity, flexibility and editing potential due to the intrinsic nature of diffusion model.
## How does it work?
GaussianAnything is a native 3D Latent Diffusion Model that supports direct 3D asset generation via diffusion sampling.
Compared to SDS-based ([DreamFusion](https://dreamfusion3d.github.io/)), mulit-view generation-based ([MVDream](https://arxiv.org/abs/2308.16512), [Zero123++](https://github.com/SUDO-AI-3D/zero123plus), [Instant3D](https://instant-3d.github.io/)) and feedforward 3D reconstruction-based ([LRM](https://yiconghong.me/LRM/), [InstantMesh](https://github.com/TencentARC/InstantMesh), [LGM](https://github.com/3DTopia/LGM)),
GaussianAnything supports feedforward 3D generation with a unified framework.
Like 2D/Video AIGC pipeline, GaussianAnything first trains a 3D-VAE and then conduct LDM training (text/image conditioned) on the learned latent space. Some related methods from the industry ([Shape-E](https://github.com/openai/shap-e), [CLAY](https://github.com/CLAY-3D/OpenCLAY), [Meta 3D Gen](https://arxiv.org/abs/2303.05371)) also follow the same paradigm.
Though currently the performance of the origin 3D LDM's works are overall inferior to reconstruction-based methods, we believe the proposed method has much potential and scales better with more data and compute resources, and may yield better 3D editing performance due to its compatability with diffusion model.
For more results see the [project page](https://nirvanalan.github.io/projects/GA/).
"""
)
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, preprocess_background],
outputs=[processed_image],
).success(
# fn=reconstruct_and_export,
# inputs=[processed_image],
# outputs=[output_model, output_video],
fn=cascaded_generation,
inputs=[processed_image, seed, cfg_scale],
# inputs=[processed_image, num_steps, seed, mesh_size, mesh_thres, unconditional_guidance_scale, args.stage_1_output_dir],
outputs=[output_video, output_gs, output_model, output_model_stage1],
)
demo.queue(max_size=1)
demo.launch(share=True)
if __name__ == "__main__":
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
with open('configs/gradio_i23d_stage2_args.json') as f:
args_2 = json.load(f)
args_2 = EasyDict(args_2)
args_2.local_rank = 0
args_2.gpus = 1
with open('configs/gradio_i23d_stage1_args.json') as f:
args_1 = json.load(f)
args_1 = EasyDict(args_1)
args_1.local_rank = 0
args_1.gpus = 1
main(args_1, args_2)
|