File size: 20,122 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#!/usr/bin/env python3
"""Calculates the Kernel Inception Distance (KID) to evalulate GANs
"""
import os
import pathlib
import sys
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

import json
import numpy as np
import torch
from sklearn.metrics.pairwise import polynomial_kernel
from scipy import linalg
from PIL import Image
from torch.nn.functional import adaptive_avg_pool2d
import ipdb
try:
    from tqdm import tqdm
except ImportError:
    # If not tqdm is not available, provide a mock version of it
    def tqdm(x): return x
import cv2
from models.inception import InceptionV3
from models.lenet import LeNet5
import glob
import pathlib

def get_activations(files, model, batch_size=50, dims=2048,
                    cuda=False, verbose=False,reso=128):
    """Calculates the activations of the pool_3 layer for all images.

    Params:
    -- files       : List of image files paths
    -- model       : Instance of inception model
    -- batch_size  : Batch size of images for the model to process at once.
                     Make sure that the number of samples is a multiple of
                     the batch size, otherwise some samples are ignored. This
                     behavior is retained to match the original FID score
                     implementation.
    -- dims        : Dimensionality of features returned by Inception
    -- cuda        : If set to True, use GPU
    -- verbose     : If set to True and parameter out_step is given, the number
                     of calculated batches is reported.
    Returns:
    -- A numpy array of dimension (num images, dims) that contains the
       activations of the given tensor when feeding inception with the
       query tensor.
    """
    model.eval()

    is_numpy = True if type(files[0]) == np.ndarray else False

    if len(files) % batch_size != 0:
        print(('Warning: number of images is not a multiple of the '
               'batch size. Some samples are going to be ignored.'))
    if batch_size > len(files):
        print(('Warning: batch size is bigger than the data size. '
               'Setting batch size to data size'))
        batch_size = len(files)

    n_batches = len(files) // batch_size
    n_used_imgs = n_batches * batch_size

    pred_arr = np.empty((n_used_imgs, dims))

    for i in tqdm(range(n_batches)):
        if verbose:
            print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True)
        start = i * batch_size
        end = start + batch_size
        if is_numpy:
            images = np.copy(files[start:end]) + 1
            images /= 2.
        else:
            images=[]
            #ipdb.set_trace()
            for f in files[start:end]:
                try:
                    img=cv2.imread(str(f))
                    #if img.mean(-1)>254.9:
                    #img[np.where(img.mean(-1)>254.9)]=0
                    img=cv2.resize(img,(reso,reso),interpolation=cv2.INTER_CUBIC)
                    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
                except:
                    img=cv2.imread(str(files[0]))
                    #if img.mean(-1)>254.9:
                    #img[np.where(img.mean(-1)>254.9)]=0
                    img=cv2.resize(img,(reso,reso),interpolation=cv2.INTER_CUBIC)
                    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
                    print(str(f))
                #ipdb.set_trace()
                images.append(img)
            #ipdb.set_trace()


            #images = [np.array(Image.open(str(f)).convert('RGB')) for f in files[start:end]]
            images = np.stack(images).astype(np.float32) / 255.
            # Reshape to (n_images, 3, height, width)
            images = images.transpose((0, 3, 1, 2))
            #ipdb.set_trace()
            

        batch = torch.from_numpy(images).type(torch.FloatTensor)
        if cuda:
            batch = batch.cuda()

        pred = model(batch)[0]

        # If model output is not scalar, apply global spatial average pooling.
        # This happens if you choose a dimensionality not equal 2048.
        if pred.shape[2] != 1 or pred.shape[3] != 1:
            pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

        pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)

    if verbose:
        print('done', np.min(images))

    return pred_arr


def extract_lenet_features(imgs, net):
    net.eval()
    feats = []
    imgs = imgs.reshape([-1, 100] + list(imgs.shape[1:]))
    if imgs[0].min() < -0.001:
      imgs = (imgs + 1)/2.0
    print(imgs.shape, imgs.min(), imgs.max())
    imgs = torch.from_numpy(imgs)
    for i, images in enumerate(imgs):
        feats.append(net.extract_features(images).detach().cpu().numpy())
    feats = np.vstack(feats)
    return feats


def _compute_activations(path, model, batch_size, dims, cuda, model_type,reso,dataset):
    sample_name=path.split('/')[-1]
    # basepath='/mnt/petrelfs/caoziang/3D_generation/cmetric/kid'+str(reso)
    # basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs/kid'+str(reso)+'test'+dataset
    # basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs-testTra/kid'+str(reso)+'test'+dataset

    # basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir/metrics/kid/gso_gt"
    # basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/kid/gso_gt"

    basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/kid/gso_gt"

    os.makedirs(os.path.join(basepath), exist_ok=True)
    files=[]

    #path = pathlib.Path(path)
    #oripath=path

    # ! objv dataset
    objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
    dataset_json = os.path.join(objv_dataset, 'dataset.json')
    with open(dataset_json, 'r') as f:
        dataset_json = json.load(f)

    # all_objs = dataset_json['Animals'][::3][:6250]
    all_objs = dataset_json['Animals'][::3][1100:2200]
    all_objs = all_objs[:600]

    for obj_folder in tqdm(all_objs):
        obj_folder = obj_folder[:-2] # to load 3 chunks
        for batch in range(1,4):
            for idx in range(8):
                files.append(os.path.join(path, obj_folder, str(batch), f'{idx}.jpg'))


    # for obj_folder in tqdm(sorted(os.listdir(path))):
    #     for idx in range(0,25):
    #         # img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png')
    #         img_name = os.path.join(path, obj_folder, 'render_mvs_25', 'model', f'{idx:03}.png')
            # files.append(img_name)


    '''
    if not os.path.exists(os.path.join(basepath,path.split('/')[-1]+str(reso)+'kid.npy')):
        import glob
        import pathlib
        path = pathlib.Path(path)
        if not type(path) == np.ndarray:
            files=[]

            # load gso
            for obj_folder in tqdm(sorted(os.listdir(path))):
                for idx in range(0,25):
                # for idx in [0]:
                    img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png')
                    files.append(img_name)

                if len(files) > 50000:
                    files = files[:50000]
                    break
    '''

    if model_type == 'inception':
        if os.path.exists(os.path.join(basepath,sample_name+str(reso)+'kid.npy')):
            act=np.load(os.path.join(basepath,sample_name+str(reso)+'kid.npy'))
            print('load_dataset',dataset)
        else:
            act = get_activations(files, model, batch_size, dims, cuda,reso=reso)
            np.save(os.path.join(basepath,sample_name+str(reso)+'kid'),act)
    elif model_type == 'lenet':
        act = extract_lenet_features(files, model)
    #ipdb.set_trace()
    return act


def _compute_activations_new(path, model, batch_size, dims, cuda, model_type,reso,dataset):
    sample_name=path.split('/')[-1]
    # basepath='/mnt/petrelfs/caoziang/3D_generation/cmetric/get3d/kid'+str(reso)+'test'+dataset
    # basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs/kid'+str(reso)+'test'+dataset
    # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir/metrics/kid'+str(reso)+'test'+dataset
    # if '_cond' in path:
    #     basepath=basepath+'_cond'

    # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset
    basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/kid/'+str(reso)+dataset

    # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/kid/'+str(reso)+dataset

    objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
    dataset_json = os.path.join(objv_dataset, 'dataset.json')
    with open(dataset_json, 'r') as f:
        dataset_json = json.load(f)

    all_objs = dataset_json['Animals'][::3][1100:2200][:600]


    if not type(path) == np.ndarray:
        import glob
        import pathlib

        #ipdb.set_trace()
        
        files=[]

        # path = pathlib.Path(path)
        # for classname in os.listdir(path):
        #     classpath=os.path.join(path,classname)
        #     #ipdb.set_trace()
            
        #     for instance in os.listdir(classpath):

        # if os.path.isdir(os.path.join(classpath,instance)):
        # img=os.path.join(classpath,instance)
        # if 'diffusion' in img:
        #     files = files+sorted([os.path.join(img, idd) for idd in os.listdir(img) if idd.endswith('ddpm.png')])
        # else:

        '''
        for obj_folder in sorted(os.listdir(path)):
            if not os.path.isdir(os.path.join(path, obj_folder)):
                continue
            # for idx in os.listdir(os.path.join(path, obj_folder)):
            # for idx in range(0,25,5):
            for idx in [0]:
                for i in range(10):
                    # img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg')

                    if 'GA' in path:
                        img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg')
                    else:
                        img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg')

                    files.append(img) 
        '''

        # ! objv
        for obj_folder in tqdm(all_objs):
            obj_folder = '/'.join(obj_folder.split('/')[1:])
            for idx in range(24):
                # files.append(os.path.join(path, obj_folder, f'{idx}.jpg'))
                if 'Lara' in path:
                    files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', f'{idx}.jpg'))
                elif 'GA' in path:
                    files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'sample-0-{idx}.jpg'))
                elif 'scale3d' in path:
                    files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '1', f'{idx}.png'))
                elif 'LRM' in path:
                    files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg'))
                else:
                    files.append(os.path.join(path, obj_folder, '0', f'{idx}.jpg'))

        # ! gso
        # for obj_folder in sorted(os.listdir(path)):

        #     if obj_folder == 'runs':
        #         continue

        #     if not os.path.isdir(os.path.join(path, obj_folder)):
        #         continue

        #     for idx in [0]:
        #         for i in range(24):
        #             if 'GA' in path:
        #                 img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg')
        #             else:
        #                 img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg')
        #                 # ipdb.set_trace()
        #             files.append(img) 



        # for name in os.listdir(path):
        #     #ipdb.set_trace()
        #     # if os.path.isdir(os.path.join(path,name)): # ! no cls
            
        #     img=os.path.join(path,name)
        #     files.append(img) # ! directly append

            # files = files+sorted([os.path.join(img, idd) for idd in os.listdir(img) if idd.endswith('.png')])
    
    
    # ipdb.set_trace()
    files=files[:50000]
    
    os.makedirs(os.path.join(basepath), exist_ok=True)

    #ipdb.set_trace()
    if model_type == 'inception':
        if os.path.exists(os.path.join(basepath,sample_name+str(reso)+'kid.npy')):
            act=np.load(os.path.join(basepath,sample_name+str(reso)+'kid.npy'))
            print('load_sample')
        else:
            act = get_activations(files, model, batch_size, dims, cuda,reso=reso)
            np.save(os.path.join(basepath,sample_name+str(reso)+'kid'),act)
    elif model_type == 'lenet':
        act = extract_lenet_features(files, model)
    #ipdb.set_trace()
    return act

def calculate_kid_given_paths(paths, batch_size, cuda, dims, model_type='inception',reso=128,dataset='omni'):
    """Calculates the KID of two paths"""
    pths = []
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError('Invalid path: %s' % p)
        if os.path.isdir(p):
            pths.append(p)
        # elif p.endswith('.npy'):
        #     np_imgs = np.load(p)
        #     if np_imgs.shape[0] > 50000: np_imgs = np_imgs[np.random.permutation(np.arange(np_imgs.shape[0]))][:50000]
        #     pths.append(np_imgs)

    if model_type == 'inception':
        block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
        model = InceptionV3([block_idx])
    elif model_type == 'lenet':
        model = LeNet5()
        model.load_state_dict(torch.load('./models/lenet.pth'))
    if cuda:
       model.cuda()

    act_true = _compute_activations(pths[0], model, batch_size, dims, cuda, model_type,reso,dataset)
    pths = pths[1:]
    results = []
    #ipdb.set_trace()
    for j, pth in enumerate(pths):
        print(paths[j+1])
        actj = _compute_activations_new(pth, model, batch_size, dims, cuda, model_type,reso,dataset)
        #ipdb.set_trace()
        kid_values = polynomial_mmd_averages(act_true, actj, n_subsets=100)
        results.append((paths[j+1], kid_values[0].mean(), kid_values[0].std()))
    return results

def _sqn(arr):
    flat = np.ravel(arr)
    return flat.dot(flat)


def polynomial_mmd_averages(codes_g, codes_r, n_subsets=50, subset_size=1000,
                            ret_var=True, output=sys.stdout, **kernel_args):
    m = min(codes_g.shape[0], codes_r.shape[0])
    mmds = np.zeros(n_subsets)
    if ret_var:
        vars = np.zeros(n_subsets)
    choice = np.random.choice
    #ipdb.set_trace()

    with tqdm(range(n_subsets), desc='MMD', file=output) as bar:
        for i in bar:
            
            g = codes_g[choice(len(codes_g), subset_size, replace=False)]
            r = codes_r[choice(len(codes_r), subset_size, replace=False)]
            o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var)
            if ret_var:
                mmds[i], vars[i] = o
            else:
                mmds[i] = o
            bar.set_postfix({'mean': mmds[:i+1].mean()})
    return (mmds, vars) if ret_var else mmds


def polynomial_mmd(codes_g, codes_r, degree=3, gamma=None, coef0=1,
                   var_at_m=None, ret_var=True):
    # use  k(x, y) = (gamma <x, y> + coef0)^degree
    # default gamma is 1 / dim
    X = codes_g
    Y = codes_r

    K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
    K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
    K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)

    return _mmd2_and_variance(K_XX, K_XY, K_YY,
                              var_at_m=var_at_m, ret_var=ret_var)

def _mmd2_and_variance(K_XX, K_XY, K_YY, unit_diagonal=False,
                       mmd_est='unbiased', block_size=1024,
                       var_at_m=None, ret_var=True):
    # based on
    # https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
    # but changed to not compute the full kernel matrix at once
    m = K_XX.shape[0]
    assert K_XX.shape == (m, m)
    assert K_XY.shape == (m, m)
    assert K_YY.shape == (m, m)
    if var_at_m is None:
        var_at_m = m

    # Get the various sums of kernels that we'll use
    # Kts drop the diagonal, but we don't need to compute them explicitly
    if unit_diagonal:
        diag_X = diag_Y = 1
        sum_diag_X = sum_diag_Y = m
        sum_diag2_X = sum_diag2_Y = m
    else:
        diag_X = np.diagonal(K_XX)
        diag_Y = np.diagonal(K_YY)

        sum_diag_X = diag_X.sum()
        sum_diag_Y = diag_Y.sum()

        sum_diag2_X = _sqn(diag_X)
        sum_diag2_Y = _sqn(diag_Y)

    Kt_XX_sums = K_XX.sum(axis=1) - diag_X
    Kt_YY_sums = K_YY.sum(axis=1) - diag_Y
    K_XY_sums_0 = K_XY.sum(axis=0)
    K_XY_sums_1 = K_XY.sum(axis=1)

    Kt_XX_sum = Kt_XX_sums.sum()
    Kt_YY_sum = Kt_YY_sums.sum()
    K_XY_sum = K_XY_sums_0.sum()

    if mmd_est == 'biased':
        mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m)
                + (Kt_YY_sum + sum_diag_Y) / (m * m)
                - 2 * K_XY_sum / (m * m))
    else:
        assert mmd_est in {'unbiased', 'u-statistic'}
        mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m-1))
        if mmd_est == 'unbiased':
            mmd2 -= 2 * K_XY_sum / (m * m)
        else:
            mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m-1))

    if not ret_var:
        return mmd2

    Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
    Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
    K_XY_2_sum = _sqn(K_XY)

    dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
    dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)

    m1 = m - 1
    m2 = m - 2
    zeta1_est = (
        1 / (m * m1 * m2) * (
            _sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum)
        - 1 / (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2)
        + 1 / (m * m * m1) * (
            _sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum)
        - 2 / m**4 * K_XY_sum**2
        - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
        + 2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
    )
    zeta2_est = (
        1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum)
        - 1 / (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2)
        + 2 / (m * m) * K_XY_2_sum
        - 2 / m**4 * K_XY_sum**2
        - 4 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
        + 4 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
    )
    var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est
               + 2 / (var_at_m * (var_at_m - 1)) * zeta2_est)

    return mmd2, var_est


if __name__ == '__main__':
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument('--true', type=str, required=True,
                        help=('Path to the true images'))
    parser.add_argument('--fake', type=str, nargs='+', required=True,
                        help=('Path to the generated images'))
    parser.add_argument('--batch-size', type=int, default=100,
                        help='Batch size to use')
    parser.add_argument('--reso', type=int, default=128,
                        help='Batch size to use')
    parser.add_argument('--dims', type=int, default=2048,
                        choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
                        help=('Dimensionality of Inception features to use. '
                              'By default, uses pool3 features'))
    parser.add_argument('-c', '--gpu', default='0', type=str,
                        help='GPU to use (leave blank for CPU only)')
    parser.add_argument('--model', default='inception', type=str,
                        help='inception or lenet')
    parser.add_argument('--dataset', default='omni', type=str,
                        help='inception or lenet')
    args = parser.parse_args()
    print(args)
    #ipdb.set_trace()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    paths = [args.true] + args.fake
    

    results = calculate_kid_given_paths(paths, args.batch_size,True, args.dims, model_type=args.model,reso=args.reso,dataset=args.dataset)
    for p, m, s in results:
        print('KID (%s): %.6f (%.6f)' % (p, m, s))