Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,693 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import xatlas
import trimesh
import cv2
import numpy as np
from PIL import Image
from functools import partial
import open3d as o3d
import trimesh
# https://github.com/hbb1/2d-gaussian-splatting/blob/19eb5f1e091a582e911b4282fe2832bac4c89f0f/utils/mesh_utils.py#L22C1-L43C18
# def post_process_mesh(mesh, cluster_to_keep=1000):
def post_process_mesh(mesh, cluster_to_keep=None):
"""
Post-process a mesh to filter out floaters and disconnected parts
"""
import copy
mesh_0 = copy.deepcopy(mesh)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
triangle_clusters, cluster_n_triangles, cluster_area = (mesh_0.cluster_connected_triangles())
cluster_to_keep = min(len(cluster_n_triangles),10)
triangle_clusters = np.asarray(triangle_clusters)
cluster_n_triangles = np.asarray(cluster_n_triangles)
cluster_area = np.asarray(cluster_area)
n_cluster = np.sort(cluster_n_triangles.copy())[-cluster_to_keep]
n_cluster = max(n_cluster, 50) # filter meshes smaller than 50
triangles_to_remove = cluster_n_triangles[triangle_clusters] < n_cluster
mesh_0.remove_triangles_by_mask(triangles_to_remove)
mesh_0.remove_unreferenced_vertices()
mesh_0.remove_degenerate_triangles()
# print("num vertices raw {}".format(len(mesh.vertices)))
# print("num vertices post {}".format(len(mesh_0.vertices)))
return mesh_0
def smooth_mesh(mesh):
import copy
mesh_0 = copy.deepcopy(mesh)
mesh_0 = mesh_0.filter_smooth_taubin(12)
return mesh_0
def to_cam_open3d(viewpoint_stack):
camera_traj = []
for i, viewpoint_cam in enumerate(viewpoint_stack):
W = viewpoint_cam.image_width
H = viewpoint_cam.image_height
ndc2pix = torch.tensor([
[W / 2, 0, 0, (W-1) / 2],
[0, H / 2, 0, (H-1) / 2],
[0, 0, 0, 1]]).float().cuda().T
intrins = (viewpoint_cam.projection_matrix @ ndc2pix)[:3,:3].T
intrinsic=o3d.camera.PinholeCameraIntrinsic(
width=viewpoint_cam.image_width,
height=viewpoint_cam.image_height,
cx = intrins[0,2].item(),
cy = intrins[1,2].item(),
fx = intrins[0,0].item(),
fy = intrins[1,1].item()
)
extrinsic=np.asarray((viewpoint_cam.world_view_transform.T).cpu().numpy())
camera = o3d.camera.PinholeCameraParameters()
camera.extrinsic = extrinsic
camera.intrinsic = intrinsic
camera_traj.append(camera)
return camera_traj
def to_cam_open3d_compat(gs_foramt_c):
W = H = image_width = image_height = 512
projection_matrix = gs_foramt_c['projection_matrix']
world_view_transform = gs_foramt_c['cam_view']
# camera_traj = []
# for i, viewpoint_cam in enumerate(viewpoint_stack):
# W = viewpoint_cam.image_width
# H = viewpoint_cam.image_height
ndc2pix = torch.tensor([
[W / 2, 0, 0, (W-1) / 2],
[0, H / 2, 0, (H-1) / 2],
[0, 0, 0, 1]]).float().T
intrins = (projection_matrix @ ndc2pix)[:3,:3].T
intrinsic=o3d.camera.PinholeCameraIntrinsic(
width=image_width,
height=image_height,
cx = intrins[0,2].item(),
cy = intrins[1,2].item(),
fx = intrins[0,0].item(),
fy = intrins[1,1].item()
)
extrinsic=np.asarray((world_view_transform.T).cpu().numpy())
camera = o3d.camera.PinholeCameraParameters()
camera.extrinsic = extrinsic
camera.intrinsic = intrinsic
# camera_traj.append(camera)
return camera
# return camera_traj
def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath):
pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]])
facenp_fx3 = facenp_fx3[:, [2, 1, 0]]
mesh = trimesh.Trimesh(
vertices=pointnp_px3,
faces=facenp_fx3,
vertex_colors=colornp_px3,
)
mesh.export(fpath, 'obj')
def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath):
pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]])
mesh = trimesh.Trimesh(
vertices=pointnp_px3,
faces=facenp_fx3,
vertex_colors=colornp_px3,
)
mesh.export(fpath, 'glb')
def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname):
import os
fol, na = os.path.split(fname)
na, _ = os.path.splitext(na)
matname = '%s/%s.mtl' % (fol, na)
fid = open(matname, 'w')
fid.write('newmtl material_0\n')
fid.write('Kd 1 1 1\n')
fid.write('Ka 0 0 0\n')
fid.write('Ks 0.4 0.4 0.4\n')
fid.write('Ns 10\n')
fid.write('illum 2\n')
fid.write('map_Kd %s.png\n' % na)
fid.close()
####
fid = open(fname, 'w')
fid.write('mtllib %s.mtl\n' % na)
for pidx, p in enumerate(pointnp_px3):
pp = p
fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2]))
for pidx, p in enumerate(tcoords_px2):
pp = p
fid.write('vt %f %f\n' % (pp[0], pp[1]))
fid.write('usemtl material_0\n')
for i, f in enumerate(facenp_fx3):
f1 = f + 1
f2 = facetex_fx3[i] + 1
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
fid.close()
# save texture map
lo, hi = 0, 1
img = np.asarray(texmap_hxwx3, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = img.clip(0, 255)
mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True)
mask = (mask <= 3.0).astype(np.float32)
kernel = np.ones((3, 3), 'uint8')
dilate_img = cv2.dilate(img, kernel, iterations=1)
img = img * (1 - mask) + dilate_img * mask
img = img.clip(0, 255).astype(np.uint8)
Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png')
def loadobj(meshfile):
v = []
f = []
meshfp = open(meshfile, 'r')
for line in meshfp.readlines():
data = line.strip().split(' ')
data = [da for da in data if len(da) > 0]
if len(data) != 4:
continue
if data[0] == 'v':
v.append([float(d) for d in data[1:]])
if data[0] == 'f':
data = [da.split('/')[0] for da in data]
f.append([int(d) for d in data[1:]])
meshfp.close()
# torch need int64
facenp_fx3 = np.array(f, dtype=np.int64) - 1
pointnp_px3 = np.array(v, dtype=np.float32)
return pointnp_px3, facenp_fx3
def loadobjtex(meshfile):
v = []
vt = []
f = []
ft = []
meshfp = open(meshfile, 'r')
for line in meshfp.readlines():
data = line.strip().split(' ')
data = [da for da in data if len(da) > 0]
if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)):
continue
if data[0] == 'v':
assert len(data) == 4
v.append([float(d) for d in data[1:]])
if data[0] == 'vt':
if len(data) == 3 or len(data) == 4:
vt.append([float(d) for d in data[1:3]])
if data[0] == 'f':
data = [da.split('/') for da in data]
if len(data) == 4:
f.append([int(d[0]) for d in data[1:]])
ft.append([int(d[1]) for d in data[1:]])
elif len(data) == 5:
idx1 = [1, 2, 3]
data1 = [data[i] for i in idx1]
f.append([int(d[0]) for d in data1])
ft.append([int(d[1]) for d in data1])
idx2 = [1, 3, 4]
data2 = [data[i] for i in idx2]
f.append([int(d[0]) for d in data2])
ft.append([int(d[1]) for d in data2])
meshfp.close()
# torch need int64
facenp_fx3 = np.array(f, dtype=np.int64) - 1
ftnp_fx3 = np.array(ft, dtype=np.int64) - 1
pointnp_px3 = np.array(v, dtype=np.float32)
uvs = np.array(vt, dtype=np.float32)
return pointnp_px3, facenp_fx3, uvs, ftnp_fx3
# ==============================================================================================
def interpolate(attr, rast, attr_idx, rast_db=None):
import nvdiffrast.torch as dr
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')
def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution):
import nvdiffrast.torch as dr
vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy())
# Convert to tensors
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
# mesh_v_tex. ture
uv_clip = uvs[None, ...] * 2.0 - 1.0
# pad to four component coordinate
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
# rasterize
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution))
# Interpolate world space position
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
mask = rast[..., 3:4] > 0
return uvs, mesh_tex_idx, gb_pos, mask
|