Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,352 Bytes
fc6af43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#define BOX_SIZE 1024
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "simple_knn.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <vector>
#include <cuda_runtime_api.h>
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#define __CUDACC__
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
struct CustomMin
{
__device__ __forceinline__
float3 operator()(const float3& a, const float3& b) const {
return { min(a.x, b.x), min(a.y, b.y), min(a.z, b.z) };
}
};
struct CustomMax
{
__device__ __forceinline__
float3 operator()(const float3& a, const float3& b) const {
return { max(a.x, b.x), max(a.y, b.y), max(a.z, b.z) };
}
};
__host__ __device__ uint32_t prepMorton(uint32_t x)
{
x = (x | (x << 16)) & 0x030000FF;
x = (x | (x << 8)) & 0x0300F00F;
x = (x | (x << 4)) & 0x030C30C3;
x = (x | (x << 2)) & 0x09249249;
return x;
}
__host__ __device__ uint32_t coord2Morton(float3 coord, float3 minn, float3 maxx)
{
uint32_t x = prepMorton(((coord.x - minn.x) / (maxx.x - minn.x)) * ((1 << 10) - 1));
uint32_t y = prepMorton(((coord.y - minn.y) / (maxx.y - minn.y)) * ((1 << 10) - 1));
uint32_t z = prepMorton(((coord.z - minn.z) / (maxx.z - minn.z)) * ((1 << 10) - 1));
return x | (y << 1) | (z << 2);
}
__global__ void coord2Morton(int P, const float3* points, float3 minn, float3 maxx, uint32_t* codes)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
codes[idx] = coord2Morton(points[idx], minn, maxx);
}
struct MinMax
{
float3 minn;
float3 maxx;
};
__global__ void boxMinMax(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes)
{
auto idx = cg::this_grid().thread_rank();
MinMax me;
if (idx < P)
{
me.minn = points[indices[idx]];
me.maxx = points[indices[idx]];
}
else
{
me.minn = { FLT_MAX, FLT_MAX, FLT_MAX };
me.maxx = { -FLT_MAX,-FLT_MAX,-FLT_MAX };
}
__shared__ MinMax redResult[BOX_SIZE];
for (int off = BOX_SIZE / 2; off >= 1; off /= 2)
{
if (threadIdx.x < 2 * off)
redResult[threadIdx.x] = me;
__syncthreads();
if (threadIdx.x < off)
{
MinMax other = redResult[threadIdx.x + off];
me.minn.x = min(me.minn.x, other.minn.x);
me.minn.y = min(me.minn.y, other.minn.y);
me.minn.z = min(me.minn.z, other.minn.z);
me.maxx.x = max(me.maxx.x, other.maxx.x);
me.maxx.y = max(me.maxx.y, other.maxx.y);
me.maxx.z = max(me.maxx.z, other.maxx.z);
}
__syncthreads();
}
if (threadIdx.x == 0)
boxes[blockIdx.x] = me;
}
__device__ __host__ float distBoxPoint(const MinMax& box, const float3& p)
{
float3 diff = { 0, 0, 0 };
if (p.x < box.minn.x || p.x > box.maxx.x)
diff.x = min(abs(p.x - box.minn.x), abs(p.x - box.maxx.x));
if (p.y < box.minn.y || p.y > box.maxx.y)
diff.y = min(abs(p.y - box.minn.y), abs(p.y - box.maxx.y));
if (p.z < box.minn.z || p.z > box.maxx.z)
diff.z = min(abs(p.z - box.minn.z), abs(p.z - box.maxx.z));
return diff.x * diff.x + diff.y * diff.y + diff.z * diff.z;
}
template<int K>
__device__ void updateKBest(const float3& ref, const float3& point, float* knn)
{
float3 d = { point.x - ref.x, point.y - ref.y, point.z - ref.z };
float dist = d.x * d.x + d.y * d.y + d.z * d.z;
for (int j = 0; j < K; j++)
{
if (knn[j] > dist)
{
float t = knn[j];
knn[j] = dist;
dist = t;
}
}
}
__global__ void boxMeanDist(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes, float* dists)
{
int idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
float3 point = points[indices[idx]];
float best[3] = { FLT_MAX, FLT_MAX, FLT_MAX };
for (int i = max(0, idx - 3); i <= min(P - 1, idx + 3); i++)
{
if (i == idx)
continue;
updateKBest<3>(point, points[indices[i]], best);
}
float reject = best[2];
best[0] = FLT_MAX;
best[1] = FLT_MAX;
best[2] = FLT_MAX;
for (int b = 0; b < (P + BOX_SIZE - 1) / BOX_SIZE; b++)
{
MinMax box = boxes[b];
float dist = distBoxPoint(box, point);
if (dist > reject || dist > best[2])
continue;
for (int i = b * BOX_SIZE; i < min(P, (b + 1) * BOX_SIZE); i++)
{
if (i == idx)
continue;
updateKBest<3>(point, points[indices[i]], best);
}
}
dists[indices[idx]] = (best[0] + best[1] + best[2]) / 3.0f;
}
void SimpleKNN::knn(int P, float3* points, float* meanDists)
{
float3* result;
cudaMalloc(&result, sizeof(float3));
size_t temp_storage_bytes;
float3 init = { 0, 0, 0 }, minn, maxx;
cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, points, result, P, CustomMin(), init);
thrust::device_vector<char> temp_storage(temp_storage_bytes);
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMin(), init);
cudaMemcpy(&minn, result, sizeof(float3), cudaMemcpyDeviceToHost);
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMax(), init);
cudaMemcpy(&maxx, result, sizeof(float3), cudaMemcpyDeviceToHost);
thrust::device_vector<uint32_t> morton(P);
thrust::device_vector<uint32_t> morton_sorted(P);
coord2Morton << <(P + 255) / 256, 256 >> > (P, points, minn, maxx, morton.data().get());
thrust::device_vector<uint32_t> indices(P);
thrust::sequence(indices.begin(), indices.end());
thrust::device_vector<uint32_t> indices_sorted(P);
cub::DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
temp_storage.resize(temp_storage_bytes);
cub::DeviceRadixSort::SortPairs(temp_storage.data().get(), temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
uint32_t num_boxes = (P + BOX_SIZE - 1) / BOX_SIZE;
thrust::device_vector<MinMax> boxes(num_boxes);
boxMinMax << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get());
boxMeanDist << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get(), meanDists);
cudaFree(result);
} |