Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,362 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Custom PyTorch ops for efficient bias and activation."""
import os
import numpy as np
import torch
import dnnlib
from .. import custom_ops
from .. import misc
#----------------------------------------------------------------------------
activation_funcs = {
'linear':
dnnlib.EasyDict(func=lambda x, **_: x,
def_alpha=0,
def_gain=1,
cuda_idx=1,
ref='',
has_2nd_grad=False),
'relu':
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x),
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=2,
ref='y',
has_2nd_grad=False),
'lrelu':
dnnlib.EasyDict(
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
def_alpha=0.2,
def_gain=np.sqrt(2),
cuda_idx=3,
ref='y',
has_2nd_grad=False),
'tanh':
dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x),
def_alpha=0,
def_gain=1,
cuda_idx=4,
ref='y',
has_2nd_grad=True),
'sigmoid':
dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x),
def_alpha=0,
def_gain=1,
cuda_idx=5,
ref='y',
has_2nd_grad=True),
'elu':
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x),
def_alpha=0,
def_gain=1,
cuda_idx=6,
ref='y',
has_2nd_grad=True),
'selu':
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x),
def_alpha=0,
def_gain=1,
cuda_idx=7,
ref='y',
has_2nd_grad=True),
'softplus':
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x),
def_alpha=0,
def_gain=1,
cuda_idx=8,
ref='y',
has_2nd_grad=True),
'swish':
dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x,
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=9,
ref='x',
has_2nd_grad=True),
}
#----------------------------------------------------------------------------
_plugin = None
_null_tensor = torch.empty([0])
def _init():
global _plugin
if _plugin is None:
_plugin = custom_ops.get_plugin(
module_name='bias_act_plugin',
sources=['bias_act.cpp', 'bias_act.cu'],
headers=['bias_act.h'],
source_dir=os.path.dirname(__file__),
extra_cuda_cflags=['--use_fast_math'],
)
return True
#----------------------------------------------------------------------------
# @torch.autocast(device_type='cuda')
def bias_act(x,
b=None,
dim=1,
act='linear',
alpha=None,
gain=None,
clamp=None,
impl='cuda'):
r"""Fused bias and activation function.
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
and scales the result by `gain`. Each of the steps is optional. In most cases,
the fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports first and second order gradients,
but not third order gradients.
Args:
x: Input activation tensor. Can be of any shape.
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
as `x`. The shape must be known, and it must match the dimension of `x`
corresponding to `dim`.
dim: The dimension in `x` corresponding to the elements of `b`.
The value of `dim` is ignored if `b` is not specified.
act: Name of the activation function to evaluate, or `"linear"` to disable.
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
See `activation_funcs` for a full list. `None` is not allowed.
alpha: Shape parameter for the activation function, or `None` to use the default.
gain: Scaling factor for the output tensor, or `None` to use default.
See `activation_funcs` for the default scaling of each activation function.
If unsure, consider specifying 1.
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
the clamping (default).
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
Returns:
Tensor of the same shape and datatype as `x`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ['ref', 'cuda']
if impl == 'cuda' and x.device.type == 'cuda' and _init():
return _bias_act_cuda(dim=dim,
act=act,
alpha=alpha,
gain=gain,
clamp=clamp).apply(x, b)
return _bias_act_ref(x=x,
b=b,
dim=dim,
act=act,
alpha=alpha,
gain=gain,
clamp=clamp)
#----------------------------------------------------------------------------
@misc.profiled_function
def _bias_act_ref(x,
b=None,
dim=1,
act='linear',
alpha=None,
gain=None,
clamp=None):
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.
"""
assert isinstance(x, torch.Tensor)
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Add bias.
if b is not None:
assert isinstance(b, torch.Tensor) and b.ndim == 1
assert 0 <= dim < x.ndim
assert b.shape[0] == x.shape[dim]
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
# Evaluate activation function.
alpha = float(alpha)
x = spec.func(x, alpha=alpha)
# Scale by gain.
gain = float(gain)
if gain != 1:
x = x * gain
# Clamp.
if clamp >= 0:
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
return x
#----------------------------------------------------------------------------
_bias_act_cuda_cache = dict()
# @torch.autocast(device_type='cuda')
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
"""Fast CUDA implementation of `bias_act()` using custom ops.
"""
# Parse arguments.
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Lookup from cache.
key = (dim, act, alpha, gain, clamp)
if key in _bias_act_cuda_cache:
return _bias_act_cuda_cache[key]
# Forward op.
class BiasActCuda(torch.autograd.Function):
@staticmethod
# @torch.cuda.amp.custom_fwd
def forward(ctx, x, b): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride(
1) == 1 else torch.contiguous_format
x = x.contiguous(memory_format=ctx.memory_format)
b = b.contiguous() if b is not None else _null_tensor
y = x
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor,
_null_tensor, 0, dim, spec.cuda_idx,
alpha, gain, clamp)
ctx.save_for_backward(
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
y if 'y' in spec.ref else _null_tensor)
return y
@staticmethod
# @torch.cuda.amp.custom_bwd
def backward(ctx, dy): # pylint: disable=arguments-differ
dy = dy.contiguous(memory_format=ctx.memory_format)
x, b, y = ctx.saved_tensors
dx = None
db = None
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
dx = dy
if act != 'linear' or gain != 1 or clamp >= 0:
dx = BiasActCudaGrad.apply(dy, x, b, y)
if ctx.needs_input_grad[1]:
db = dx.sum([i for i in range(dx.ndim) if i != dim])
return dx, db
# Backward op.
class BiasActCudaGrad(torch.autograd.Function):
@staticmethod
# @torch.cuda.amp.custom_fwd
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride(
1) == 1 else torch.contiguous_format
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim,
spec.cuda_idx, alpha, gain, clamp)
ctx.save_for_backward(dy if spec.has_2nd_grad else _null_tensor, x,
b, y)
return dx
@staticmethod
# @torch.cuda.amp.custom_bwd
def backward(ctx, d_dx): # pylint: disable=arguments-differ
d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
dy, x, b, y = ctx.saved_tensors
d_dy = None
d_x = None
d_b = None
d_y = None
if ctx.needs_input_grad[0]:
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
if spec.has_2nd_grad and (ctx.needs_input_grad[1]
or ctx.needs_input_grad[2]):
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim,
spec.cuda_idx, alpha, gain, clamp)
if spec.has_2nd_grad and ctx.needs_input_grad[2]:
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
return d_dy, d_x, d_b, d_y
# Add to cache.
_bias_act_cuda_cache[key] = BiasActCuda
return BiasActCuda
#----------------------------------------------------------------------------
|