File size: 12,870 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
# https://github.com/JingyunLiang/SwinIR/blob/main/models/network_swinir.py#L812

import copy
import math
from collections import namedtuple
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from pathlib import Path
from random import random

from einops import rearrange, repeat, reduce, pack, unpack

import torch
import torch.nn.functional as F
import torchvision.transforms as T
from torch import einsum, nn
from beartype.typing import List, Union
from beartype import beartype
from tqdm.auto import tqdm
from pdb import set_trace as st

# helper functions, from:
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py


def exists(val):
    return val is not None


def identity(t, *args, **kwargs):
    return t


def divisible_by(numer, denom):
    return (numer % denom) == 0


def first(arr, d=None):
    if len(arr) == 0:
        return d
    return arr[0]


def maybe(fn):
    @wraps(fn)
    def inner(x):
        if not exists(x):
            return x
        return fn(x)

    return inner


def once(fn):
    called = False

    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)

    return inner


print_once = once(print)


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def compact(input_dict):
    return {key: value for key, value in input_dict.items() if exists(value)}


def maybe_transform_dict_key(input_dict, key, fn):
    if key not in input_dict:
        return input_dict

    copied_dict = input_dict.copy()
    copied_dict[key] = fn(copied_dict[key])
    return copied_dict


def cast_uint8_images_to_float(images):
    if not images.dtype == torch.uint8:
        return images
    return images / 255


def module_device(module):
    return next(module.parameters()).device


def zero_init_(m):
    nn.init.zeros_(m.weight)
    if exists(m.bias):
        nn.init.zeros_(m.bias)


def eval_decorator(fn):
    def inner(model, *args, **kwargs):
        was_training = model.training
        model.eval()
        out = fn(model, *args, **kwargs)
        model.train(was_training)
        return out

    return inner


def pad_tuple_to_length(t, length, fillvalue=None):
    remain_length = length - len(t)
    if remain_length <= 0:
        return t
    return (*t, *((fillvalue, ) * remain_length))


# helper classes


class Identity(nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x


# tensor helpers


def log(t, eps: float = 1e-12):
    return torch.log(t.clamp(min=eps))


def l2norm(t):
    return F.normalize(t, dim=-1)


def right_pad_dims_to(x, t):
    padding_dims = x.ndim - t.ndim
    if padding_dims <= 0:
        return t
    return t.view(*t.shape, *((1, ) * padding_dims))


def masked_mean(t, *, dim, mask=None):
    if not exists(mask):
        return t.mean(dim=dim)

    denom = mask.sum(dim=dim, keepdim=True)
    mask = rearrange(mask, 'b n -> b n 1')
    masked_t = t.masked_fill(~mask, 0.)

    return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)


def resize_image_to(image,
                    target_image_size,
                    clamp_range=None,
                    mode='nearest'):
    orig_image_size = image.shape[-1]

    if orig_image_size == target_image_size:
        return image

    out = F.interpolate(image, target_image_size, mode=mode)

    if exists(clamp_range):
        out = out.clamp(*clamp_range)

    return out


def calc_all_frame_dims(downsample_factors: List[int], frames):
    if not exists(frames):
        return (tuple(), ) * len(downsample_factors)

    all_frame_dims = []

    for divisor in downsample_factors:
        assert divisible_by(frames, divisor)
        all_frame_dims.append((frames // divisor, ))

    return all_frame_dims


def safe_get_tuple_index(tup, index, default=None):
    if len(tup) <= index:
        return default
    return tup[index]


# image normalization functions
# ddpms expect images to be in the range of -1 to 1


def normalize_neg_one_to_one(img):
    return img * 2 - 1


def unnormalize_zero_to_one(normed_img):
    return (normed_img + 1) * 0.5


# def Upsample(dim, dim_out=None):
#     dim_out = default(dim_out, dim)

#     return nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'),
#                          nn.Conv2d(dim, dim_out, 3, padding=1))



class PixelShuffleUpsample(nn.Module):
    """
    code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
    https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
    """
    def __init__(self, dim, dim_out=None):
        super().__init__()
        dim_out = default(dim_out, dim)
        conv = nn.Conv2d(dim, dim_out * 4, 1)

        self.net = nn.Sequential(conv, nn.SiLU(), nn.PixelShuffle(2))

        self.init_conv_(conv)

    def init_conv_(self, conv):
        o, i, h, w = conv.weight.shape
        conv_weight = torch.empty(o // 4, i, h, w)
        nn.init.kaiming_uniform_(conv_weight)
        conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')

        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def forward(self, x):
        return self.net(x)


class ResidualBlock(nn.Module):
    def __init__(self,
                 dim_in,
                 dim_out,
                 dim_inter=None,
                 use_norm=True,
                 norm_layer=nn.BatchNorm2d,
                 bias=False):
        super().__init__()
        if dim_inter is None:
            dim_inter = dim_out

        if use_norm:
            self.conv = nn.Sequential(
                norm_layer(dim_in),
                nn.ReLU(True),
                nn.Conv2d(dim_in,
                          dim_inter,
                          3,
                          1,
                          1,
                          bias=bias,
                          padding_mode='reflect'),
                norm_layer(dim_inter),
                nn.ReLU(True),
                nn.Conv2d(dim_inter,
                          dim_out,
                          3,
                          1,
                          1,
                          bias=bias,
                          padding_mode='reflect'),
            )
        else:
            self.conv = nn.Sequential(
                nn.ReLU(True),
                nn.Conv2d(dim_in, dim_inter, 3, 1, 1),
                nn.ReLU(True),
                nn.Conv2d(dim_inter, dim_out, 3, 1, 1),
            )

        self.short_cut = None
        if dim_in != dim_out:
            self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1)

    def forward(self, feats):
        feats_out = self.conv(feats)
        if self.short_cut is not None:
            feats_out = self.short_cut(feats) + feats_out
        else:
            feats_out = feats_out + feats
        return feats_out


class Upsample(nn.Sequential):
    """Upsample module.
    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """
    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. '
                             'Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)


class PixelUnshuffleUpsample(nn.Module):
    def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
        super().__init__()

        self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
        self.conv_before_upsample = nn.Sequential(
            nn.Conv2d(output_dim, num_feat, 3, 1, 1),
            nn.LeakyReLU(inplace=True))
        self.upsample = Upsample(sr_ratio, num_feat)  # 4 time SR
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

    def forward(self, x, input_skip_connection=True, *args, **kwargs):
        # x = self.conv_first(x)
        if input_skip_connection:
            x = self.conv_after_body(x) + x
        else:
            x = self.conv_after_body(x)

        x = self.conv_before_upsample(x)
        x = self.conv_last(self.upsample(x))
        return x


class Conv3x3TriplaneTransformation(nn.Module):
    # used in the final layer before triplane
    def __init__(self, input_dim, output_dim) -> None:
        super().__init__()

        self.conv_after_unpachify = nn.Sequential(
            nn.Conv2d(input_dim, output_dim, 3, 1, 1),
            nn.LeakyReLU(inplace=True)
        )

        self.conv_before_rendering = nn.Sequential(
            nn.Conv2d(output_dim, output_dim, 3, 1, 1),
            nn.LeakyReLU(inplace=True))

    def forward(self, unpachified_latent):
        latent = self.conv_after_unpachify(unpachified_latent) # no residual connections here
        latent = self.conv_before_rendering(latent) + latent
        return latent


# https://github.com/JingyunLiang/SwinIR/blob/6545850fbf8df298df73d81f3e8cba638787c8bd/models/network_swinir.py#L750
class NearestConvSR(nn.Module):
    """
    code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
    https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
    """
    def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
        super().__init__()

        self.upscale = sr_ratio

        self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
        self.conv_before_upsample = nn.Sequential(nn.Conv2d(output_dim, num_feat, 3, 1, 1),
                                                    nn.LeakyReLU(inplace=True))
        self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        if self.upscale == 4:
            self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
    
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x, *args, **kwargs):

        # x = self.conv_first(x)
        x = self.conv_after_body(x) + x
        x = self.conv_before_upsample(x)
        x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
        if self.upscale == 4:
            x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
        x = self.conv_last(self.lrelu(self.conv_hr(x)))


        return x

# https://github.com/yumingj/C2-Matching/blob/fa171ca6707c6f16a5d04194ce866ea70bb21d2b/mmsr/models/archs/ref_restoration_arch.py#L65
class NearestConvSR_Residual(NearestConvSR):
    # learn residual + normalize
    
    def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
        super().__init__(output_dim, num_feat, num_out_ch, sr_ratio, *args, **kwargs)
        # self.mean = torch.Tensor((0.485, 0.456, 0.406)).view(1,3,1,1) # imagenet mean
        self.act = nn.Tanh()

    def forward(self, x, base_x, *args, **kwargs):
        # base_x: low-resolution 3D rendering, for residual addition
        # self.mean = self.mean.type_as(x)
        # x = super().forward(x).clamp(-1,1) 
        x = super().forward(x)
        x = self.act(x) # residual normalize to [-1,1]
        scale = x.shape[-1] // base_x.shape[-1] # 2 or 4
        x = x + F.interpolate(base_x, None, scale, 'bilinear', False) # add residual; [-1,1] range

        # return x  + 2 * self.mean
        return x
    
class UpsampleOneStep(nn.Sequential):
    """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
       Used in lightweight SR to save parameters.

    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.

    """

    def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
        self.num_feat = num_feat
        self.input_resolution = input_resolution
        m = []
        m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
        m.append(nn.PixelShuffle(scale))
        super(UpsampleOneStep, self).__init__(*m)

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.num_feat * 3 * 9
        return flops

# class PixelShuffledDirect(nn.Module):