Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,784 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
import torchvision
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from tqdm import tqdm
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion import dist_util, logger
from guided_diffusion.train_util import (calc_average_loss,
log_rec3d_loss_dict,
find_resume_checkpoint)
from torch.optim import AdamW
from ..train_util import TrainLoopBasic, TrainLoop3DRec
import vision_aided_loss
from dnnlib.util import calculate_adaptive_weight
def flip_yaw(pose_matrix):
flipped = pose_matrix.clone()
flipped[:, 0, 1] *= -1
flipped[:, 0, 2] *= -1
flipped[:, 1, 0] *= -1
flipped[:, 2, 0] *= -1
flipped[:, 0, 3] *= -1
# st()
return flipped
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
from ..train_util_cvD import TrainLoop3DcvD
# from .nvD import
class TrainLoop3DcvD_nvsD_canoD(TrainLoop3DcvD):
# class TrainLoop3DcvD_nvsD_canoD():
def __init__(self,
*,
rec_model,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
use_amp=False,
**kwargs):
super().__init__(rec_model=rec_model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
use_amp=use_amp,
**kwargs)
device = dist_util.dev()
self.cano_cvD = vision_aided_loss.Discriminator(
cv_type='clip', loss_type='multilevel_sigmoid_s',
device=device).to(device)
self.cano_cvD.cv_ensemble.requires_grad_(
False) # Freeze feature extractor
# self.cano_cvD.train()
cvD_model_params = list(self.cano_cvD.parameters())
SR_TRAINING = False
if SR_TRAINING: # replace the conv1 with 6 channel input
# width, patch_size = self.nvs_cvD.cv_ensemble
vision_width, vision_patch_size = [
self.cano_cvD.cv_ensemble.models[0].model.conv1.weight.shape[k]
for k in [0, -1]
]
self.cano_cvD.cv_ensemble.models[0].model.conv1 = th.nn.Conv2d(
in_channels=6,
out_channels=vision_width,
kernel_size=vision_patch_size,
stride=vision_patch_size,
bias=False).to(dist_util.dev())
cvD_model_params += list(
self.cano_cvD.cv_ensemble.models[0].model.conv1.parameters())
self.cano_cvD.cv_ensemble.models[
0].image_mean = self.cano_cvD.cv_ensemble.models[
0].image_mean.repeat(2)
self.cano_cvD.cv_ensemble.models[
0].image_std = self.cano_cvD.cv_ensemble.models[
0].image_std.repeat(2)
# logger.log(f'cano_cvD_model_params: {cvD_model_params}')
self._load_and_sync_parameters(model=self.cano_cvD,
model_name='cano_cvD')
self.mp_trainer_canonical_cvD = MixedPrecisionTrainer(
model=self.cano_cvD,
use_fp16=self.use_fp16,
fp16_scale_growth=fp16_scale_growth,
model_name='canonical_cvD',
use_amp=use_amp,
model_params=cvD_model_params)
# cano_lr = 2e-5 * (lr / 1e-5) # D_lr=2e-4 in cvD by default
# cano_lr = 5e-5 * (lr / 1e-5) # D_lr=2e-4 in cvD by default
cano_lr = 2e-4 * (
lr / 1e-5) # D_lr=2e-4 in cvD by default. 1e-4 still overfitting
self.opt_cano_cvD = AdamW(
self.mp_trainer_canonical_cvD.master_params,
lr=cano_lr, # same as the G
betas=(0, 0.999),
eps=1e-8) # dlr in biggan cfg
logger.log(f'cpt_cano_cvD lr: {cano_lr}')
if self.use_ddp:
self.ddp_cano_cvD = DDP(
self.cano_cvD,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
self.ddp_cano_cvD = self.cano_cvD
th.cuda.empty_cache()
def run_step(self, batch, step='g_step'):
# self.forward_backward(batch)
if step == 'g_step_rec':
self.forward_G_rec(batch)
took_step_g_rec = self.mp_trainer_rec.optimize(self.opt)
if took_step_g_rec:
self._update_ema() # g_ema
elif step == 'd_step_rec':
self.forward_D(batch, behaviour='rec')
# _ = self.mp_trainer_cvD.optimize(self.opt_cvD)
_ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD)
elif step == 'g_step_nvs':
self.forward_G_nvs(batch)
took_step_g_nvs = self.mp_trainer_rec.optimize(self.opt)
if took_step_g_nvs:
self._update_ema() # g_ema
elif step == 'd_step_nvs':
self.forward_D(batch, behaviour='nvs')
_ = self.mp_trainer_cvD.optimize(self.opt_cvD)
# _ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD)
self._anneal_lr()
self.log_step()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# batch, cond = next(self.data)
# if batch is None:
batch = next(self.data)
if self.novel_view_poses is None:
self.novel_view_poses = th.roll(batch['c'], 1, 0).to(
dist_util.dev()) # save for eval visualization use
self.run_step(batch, 'g_step_rec')
# if self.step % 2 == 0:
batch = next(self.data)
self.run_step(batch, 'd_step_rec')
# if self.step % 2 == 1:
batch = next(self.data)
self.run_step(batch, 'g_step_nvs')
batch = next(self.data)
self.run_step(batch, 'd_step_nvs')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
self.eval_loop()
# self.eval_novelview_loop()
# let all processes sync up before starting with a new epoch of training
th.cuda.empty_cache()
dist_util.synchronize()
if self.step % self.save_interval == 0:
self.save()
self.save(self.mp_trainer_cvD, self.mp_trainer_cvD.model_name)
self.save(self.mp_trainer_canonical_cvD,
self.mp_trainer_canonical_cvD.model_name)
dist_util.synchronize()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.save(self.mp_trainer_cvD,
self.mp_trainer_cvD.model_name)
self.save(self.mp_trainer_canonical_cvD,
self.mp_trainer_canonical_cvD.model_name)
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.save(self.mp_trainer_canonical_cvD, 'cvD')
def forward_D(self, batch, behaviour): # update D
self.mp_trainer_canonical_cvD.zero_grad()
self.mp_trainer_cvD.zero_grad()
self.rec_model.requires_grad_(False)
# self.ddp_model.requires_grad_(False)
# update two D
if behaviour == 'nvs':
self.ddp_nvs_cvD.requires_grad_(True)
self.ddp_cano_cvD.requires_grad_(False)
else: # update rec canonical D
self.ddp_nvs_cvD.requires_grad_(False)
self.ddp_cano_cvD.requires_grad_(True)
batch_size = batch['img'].shape[0]
# * sample a new batch for D training
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_canonical_cvD.use_amp):
novel_view_c = th.cat([micro['c'][1:], micro['c'][:1]])
latent = self.rec_model(img=micro['img_to_encoder'],
behaviour='enc_dec_wo_triplane')
cano_pred = self.rec_model(latent=latent,
c=micro['c'],
behaviour='triplane_dec')
# TODO, optimize with one encoder, and two triplane decoder
# FIXME: quit autocast to runbackward
if behaviour == 'rec':
if 'image_sr' in cano_pred:
# try concat them in batch
# d_loss = self.run_D_Diter(
# real=th.cat([
# th.nn.functional.interpolate(
# micro['img'],
# size=micro['img_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# micro['img_sr'],
# ],
# dim=1),
# fake=th.cat([
# th.nn.functional.interpolate(
# cano_pred['image_raw'],
# size=cano_pred['image_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# cano_pred['image_sr'],
# ],
# dim=1),
# D=self.ddp_cano_cvD) # TODO, add SR for FFHQ
d_loss = self.run_D_Diter(
real= micro['img_sr'],
fake=cano_pred['image_sr'],
D=self.ddp_cano_cvD) # TODO, add SR for FFHQ
else:
d_loss = self.run_D_Diter(
real=micro['img'],
fake=cano_pred['image_raw'],
D=self.ddp_cano_cvD) # TODO, add SR for FFHQ
log_rec3d_loss_dict(
{'vision_aided_loss/D_cano': d_loss})
# self.mp_trainer_canonical_cvD.backward(d_loss)
else:
assert behaviour == 'nvs'
nvs_pred = self.rec_model(latent=latent,
c=novel_view_c,
behaviour='triplane_dec')
if 'image_sr' in nvs_pred:
d_loss = self.run_D_Diter(
real=cano_pred['image_sr'],
# th.cat([
# th.nn.functional.interpolate(
# cano_pred['image_raw'],
# size=cano_pred['image_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# ],
# dim=1),
fake= nvs_pred['image_sr'],
# th.cat([
# th.nn.functional.interpolate(
# nvs_pred['image_raw'],
# size=nvs_pred['image_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# ],
# dim=1),
D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ
else:
d_loss = self.run_D_Diter(
real=cano_pred['image_raw'],
fake=nvs_pred['image_raw'],
D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ
log_rec3d_loss_dict(
{'vision_aided_loss/D_nvs': d_loss})
# self.mp_trainer_cvD.backward(d_loss)
if behaviour == 'rec':
self.mp_trainer_canonical_cvD.backward(d_loss)
else:
assert behaviour == 'nvs'
self.mp_trainer_cvD.backward(d_loss)
def forward_G_rec(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
self.ddp_cano_cvD.requires_grad_(False)
self.ddp_nvs_cvD.requires_grad_(False)
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
pred = self.rec_model(
img=micro['img_to_encoder'], c=micro['c']
) # render novel view for first half of the batch for D loss
target_for_rec = micro
cano_pred = pred
# if last_batch or not self.use_ddp:
# loss, loss_dict = self.loss_class(cano_pred,
# target_for_rec,
# test_mode=False,
# step=self.step +
# self.resume_step)
# else:
with self.rec_model.no_sync(): # type: ignore
loss, loss_dict, fg_mask = self.loss_class(cano_pred,
target_for_rec,
test_mode=False,
step=self.step +
self.resume_step,
return_fg_mask=True)
# cano_pred_img = cano_pred['image_raw']
if self.loss_class.opt.symmetry_loss:
pose, intrinsics = micro['c'][:, :16].reshape(
-1, 4, 4), micro['c'][:, 16:]
flipped_pose = flip_yaw(pose)
mirror_c = th.cat(
[flipped_pose.reshape(-1, 16), intrinsics], -1)
nvs_pred = self.rec_model(latent={
k: v
for k, v in pred.items() if 'latent' in k
},
c=mirror_c,
behaviour='triplane_dec',
return_raw_only=True)
# cano_pred_img = th.cat([cano_pred_img, nvs_pred['image_raw']], 0)
# concat data for supervision
nvs_gt = {
k: th.flip(target_for_rec[k], [-1])
for k in
['img'] # fliplr leads to wrong color; B 3 H W shape
}
flipped_fg_mask = th.flip(fg_mask, [-1])
if 'conf_sigma' in pred:
conf_sigma = th.flip(pred['conf_sigma'], [-1])
conf_sigma = th.nn.AdaptiveAvgPool2d(fg_mask.shape[-2:])(conf_sigma) # dynamically resize to target img size
else:
conf_sigma=None
with self.rec_model.no_sync(): # type: ignore
loss_symm, loss_dict_symm = self.loss_class.calc_2d_rec_loss(
nvs_pred['image_raw'],
nvs_gt['img'],
flipped_fg_mask,
# test_mode=True,
test_mode=False,
step=self.step + self.resume_step,
conf_sigma=conf_sigma,
)
loss += (loss_symm * 1.0) # as in unsup3d
# if conf_sigma is not None:
# conf_loss = th.nn.functional.mse_loss(conf_sigma, flipped_fg_mask) * 0.2
# loss += conf_loss # a log that regularizes all confidence to 1
# loss_dict[f'conf_loss'] = conf_loss
for k, v in loss_dict_symm.items():
loss_dict[f'{k}_symm'] = v
# add cvD supervision
# ! TODO
if 'image_sr' in cano_pred:
# concat both resolution
# vision_aided_loss = self.ddp_cano_cvD(
# th.cat([
# th.nn.functional.interpolate(
# cano_pred['image_raw'],
# size=cano_pred['image_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# cano_pred['image_sr'],
# ],
# dim=1), # 6 channel input
# for_G=True).mean() # [B, 1] shape
vision_aided_loss = self.ddp_cano_cvD(
cano_pred['image_sr'],
for_G=True).mean() # [B, 1] shape
else:
vision_aided_loss = self.ddp_cano_cvD(
cano_pred['image_raw'],
for_G=True).mean() # [B, 1] shape
# last_layer = self.rec_model.module.decoder.triplane_decoder.decoder.net[ # type: ignore
# -1].weight # type: ignore
d_weight = th.tensor(self.loss_class.opt.rec_cvD_lambda).to(
dist_util.dev())
# d_weight = calculate_adaptive_weight(
# loss,
# vision_aided_loss,
# last_layer,
# disc_weight_max=0.1) * self.loss_class.opt.rec_cvD_lambda
loss += vision_aided_loss * d_weight
loss_dict.update({
'vision_aided_loss/G_rec':
(vision_aided_loss * d_weight).detach(),
'd_weight':
d_weight
})
log_rec3d_loss_dict(loss_dict)
self.mp_trainer_rec.backward(
loss) # no nvs cvD loss, following VQ3D
# DDP some parameters no grad:
# for name, p in self.ddp_model.named_parameters():
# if p.grad is None:
# print(f"(in rec)found rec unused param: {name}")
# ! move to other places, add tensorboard
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
# with th.no_grad():
# # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
# gt_depth = micro['depth']
# if gt_depth.ndim == 3:
# gt_depth = gt_depth.unsqueeze(1)
# gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
# gt_depth.min())
# # if True:
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (
# pred_depth.max() - pred_depth.min())
# pred_img = pred['image_raw']
# gt_img = micro['img']
# if 'image_sr' in pred:
# if pred['image_sr'].shape[-1] == 512:
# pred_img = th.cat(
# [self.pool_512(pred_img), pred['image_sr']],
# dim=-1)
# gt_img = th.cat(
# [self.pool_512(micro['img']), micro['img_sr']],
# dim=-1)
# pred_depth = self.pool_512(pred_depth)
# gt_depth = self.pool_512(gt_depth)
# elif pred['image_sr'].shape[-1] == 256:
# pred_img = th.cat(
# [self.pool_256(pred_img), pred['image_sr']],
# dim=-1)
# gt_img = th.cat(
# [self.pool_256(micro['img']), micro['img_sr']],
# dim=-1)
# pred_depth = self.pool_256(pred_depth)
# gt_depth = self.pool_256(gt_depth)
# else:
# pred_img = th.cat(
# [self.pool_128(pred_img), pred['image_sr']],
# dim=-1)
# gt_img = th.cat(
# [self.pool_128(micro['img']), micro['img_sr']],
# dim=-1)
# gt_depth = self.pool_128(gt_depth)
# pred_depth = self.pool_128(pred_depth)
# else:
# gt_img = self.pool_64(gt_img)
# gt_depth = self.pool_64(gt_depth)
# gt_vis = th.cat(
# [gt_img, gt_depth.repeat_interleave(3, dim=1)],
# dim=-1) # TODO, fail to load depth. range [0, 1]
# pred_vis = th.cat(
# [pred_img,
# pred_depth.repeat_interleave(3, dim=1)],
# dim=-1) # B, 3, H, W
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
# 1, 2, 0).cpu() # ! pred in range[-1, 1]
# # vis_grid = torchvision.utils.make_grid(vis) # HWC
# vis = vis.numpy() * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# Image.fromarray(vis).save(
# f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
# )
# print(
# 'log vis to: ',
# f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
# )
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
def norm_depth(pred_depth): # to [-1,1]
# pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
return -(pred_depth * 2 - 1)
pred_img = pred['image_raw'].clip(-1,1)
gt_img = micro['img']
# infer novel view also
pred_nv_img = self.rec_model(
img=micro['img_to_encoder'],
c=self.novel_view_poses) # pred: (B, 3, 64, 64)
# if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = norm_depth(gt_depth)
# gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
# gt_depth.min())
# if True:
if 'image_depth' in pred:
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (
# pred_depth.max() - pred_depth.min())
pred_depth = norm_depth(pred['image_depth'])
pred_nv_depth = norm_depth(
pred_nv_img['image_depth'])
else:
pred_depth = th.zeros_like(gt_depth)
pred_nv_depth = th.zeros_like(gt_depth)
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
pred_nv_depth = self.pool_512(pred_nv_depth)
gt_depth = self.pool_512(gt_depth)
pred_vis_nv = th.cat(
[self.pool_512(pred_nv_img['image_raw']), pred_nv_img['image_sr']],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
if gt_img.shape[-1] == 64:
gt_depth = self.pool_64(gt_depth)
elif gt_img.shape[-1] == 128:
gt_depth = self.pool_128(gt_depth)
# else:
# gt_depth = self.pool_64(gt_depth)
# st()
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
pred_vis_nv = th.cat([
# pred_nv_img['image_raw'].clip(-1,1),
pred_vis_nv,
pred_nv_depth.repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
pred_vis = th.cat([pred_vis, pred_vis_nv],
dim=-2) # cat in H dim
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
vis = th.cat([gt_vis, pred_vis], dim=-2)
# .permute(
# 0, 2, 3, 1).cpu()
vis_tensor = torchvision.utils.make_grid(
vis, nrow=vis.shape[-1] // 64) # HWC
torchvision.utils.save_image(
vis_tensor,
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg', normalize=True, value_range=(-1,1))
# vis = vis.numpy() * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# Image.fromarray(vis).save(
# f'{logger.get_dir()}/{self.step+self.resume_step}.jpg')
logger.log(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg')
def forward_G_nvs(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
self.ddp_cano_cvD.requires_grad_(False)
self.ddp_nvs_cvD.requires_grad_(False) # only use novel view D
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
nvs_pred = self.rec_model(
img=micro['img_to_encoder'],
c=th.cat([
micro['c'][1:],
micro['c'][:1],
])) # ! render novel views only for D loss
# add cvD supervision
if 'image_sr' in nvs_pred:
# concat sr and raw results
# vision_aided_loss = self.ddp_nvs_cvD(
# # pred_nv['image_sr'],
# # 0.5 * pred_nv['image_sr'] + 0.5 * th.nn.functional.interpolate(pred_nv['image_raw'], size=pred_nv['image_sr'].shape[2:], mode='bilinear'),
# th.cat([
# th.nn.functional.interpolate(
# nvs_pred['image_raw'],
# size=nvs_pred['image_sr'].shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=True),
# nvs_pred['image_sr'],
# ],
# dim=1),
# for_G=True).mean() # ! for debugging
vision_aided_loss = self.ddp_nvs_cvD(
# pred_nv['image_sr'],
# 0.5 * pred_nv['image_sr'] + 0.5 * th.nn.functional.interpolate(pred_nv['image_raw'], size=pred_nv['image_sr'].shape[2:], mode='bilinear'),
nvs_pred['image_sr'],
for_G=True).mean() # ! for debugging
# supervise sr only
# vision_aided_loss = self.ddp_nvs_cvD(
# # pred_nv['image_sr'],
# # 0.5 * pred_nv['image_sr'] + 0.5 * th.nn.functional.interpolate(pred_nv['image_raw'], size=pred_nv['image_sr'].shape[2:], mode='bilinear'),
# th.cat([nvs_pred['image_sr'],
# th.nn.functional.interpolate(nvs_pred['image_raw'], size=nvs_pred['image_sr'].shape[2:], mode='bilinear',
# align_corners=False,
# antialias=True),]),
# for_G=True).mean() # ! for debugging
# pred_nv['image_raw'], for_G=True).mean() # [B, 1] shape
else:
vision_aided_loss = self.ddp_nvs_cvD(
nvs_pred['image_raw'],
for_G=True).mean() # [B, 1] shape
loss = vision_aided_loss * self.loss_class.opt.nvs_cvD_lambda
log_rec3d_loss_dict({
'vision_aided_loss/G_nvs': loss
# vision_aided_loss * self.loss_class.opt.nvs_cvD_lambda,
})
self.mp_trainer_rec.backward(loss)
# ! move to other places, add tensorboard
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
if dist_util.get_rank() == 0 and self.step % 500 == 1:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
def norm_depth(pred_depth): # to [-1,1]
# pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
return -(pred_depth * 2 - 1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = norm_depth(gt_depth)
# if True:
# pred_depth = nvs_pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (
# pred_depth.max() - pred_depth.min())
pred_depth = norm_depth(nvs_pred['image_depth'])
pred_img = nvs_pred['image_raw']
gt_img = micro['img']
if 'image_sr' in nvs_pred:
if nvs_pred['image_sr'].shape[-1] == 512:
pred_img = th.cat([
self.pool_512(pred_img), nvs_pred['image_sr']
],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif nvs_pred['image_sr'].shape[-1] == 256:
pred_img = th.cat([
self.pool_256(pred_img), nvs_pred['image_sr']
],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat([
self.pool_128(pred_img), nvs_pred['image_sr']
],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
if gt_img.shape[-1] == 64:
gt_depth = self.pool_64(gt_depth)
elif gt_img.shape[-1] == 128:
gt_depth = self.pool_128(gt_depth)
# else:
# gt_img = self.pool_64(gt_img)
# gt_depth = self.pool_64(gt_depth)
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
# 1, 2, 0).cpu() # ! pred in range[-1, 1]
vis = th.cat([gt_vis, pred_vis], dim=-2)
vis = torchvision.utils.make_grid(
vis,
normalize=True,
scale_each=True,
value_range=(-1, 1)).cpu().permute(1, 2, 0) # H W 3
vis = vis.numpy() * 255
vis = vis.clip(0, 255).astype(np.uint8)
# print(vis.shape)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)
print(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)
class TrainLoop3DcvD_nvsD_canoD_eg3d(TrainLoop3DcvD_nvsD_canoD):
def __init__(self, *, rec_model, loss_class, data, eval_data, batch_size, microbatch, lr, ema_rate, log_interval, eval_interval, save_interval, resume_checkpoint, use_fp16=False, fp16_scale_growth=0.001, weight_decay=0, lr_anneal_steps=0, iterations=10001, load_submodule_name='', ignore_resume_opt=False, use_amp=False, **kwargs):
super().__init__(rec_model=rec_model, loss_class=loss_class, data=data, eval_data=eval_data, batch_size=batch_size, microbatch=microbatch, lr=lr, ema_rate=ema_rate, log_interval=log_interval, eval_interval=eval_interval, save_interval=save_interval, resume_checkpoint=resume_checkpoint, use_fp16=use_fp16, fp16_scale_growth=fp16_scale_growth, weight_decay=weight_decay, lr_anneal_steps=lr_anneal_steps, iterations=iterations, load_submodule_name=load_submodule_name, ignore_resume_opt=ignore_resume_opt, use_amp=use_amp, **kwargs)
self.rendering_kwargs = self.rec_model.module.decoder.triplane_decoder.rendering_kwargs # type: ignore
self._prepare_nvs_pose() # for eval novelview visualization
@th.inference_mode()
def eval_novelview_loop(self):
# novel view synthesis given evaluation camera trajectory
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}_batch_{i}.mp4',
mode='I',
fps=60,
codec='libx264')
for idx, c in enumerate(self.all_nvs_params):
pred = self.rec_model(img=micro['img_to_encoder'],
c=c.unsqueeze(0).repeat_interleave(micro['img'].shape[0], 0)) # pred: (B, 3, 64, 64)
# c=micro['c']) # pred: (B, 3, 64, 64)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
# st()
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
# ! cooncat h dim
pred_vis = pred_vis.permute(0,2,3,1).flatten(0,1) # H W 3
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = pred_vis.permute(1,2,0).cpu().numpy()
vis = pred_vis.cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
# for j in range(vis.shape[0]):
# video_out.append_data(vis[j])
video_out.append_data(vis)
video_out.close()
th.cuda.empty_cache()
def _prepare_nvs_pose(self):
from nsr.camera_utils import LookAtPoseSampler, FOV_to_intrinsics
device = dist_util.dev()
fov_deg = 18.837 # for ffhq/afhq
intrinsics = FOV_to_intrinsics(fov_deg, device=device)
all_nvs_params = []
pitch_range = 0.25
yaw_range = 0.35
num_keyframes = 10 # how many nv poses to sample from
w_frames = 1
cam_pivot = th.Tensor(self.rendering_kwargs.get('avg_camera_pivot')).to(device)
cam_radius = self.rendering_kwargs.get('avg_camera_radius')
for frame_idx in range(num_keyframes):
cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.sin(2 * 3.14 * frame_idx / (num_keyframes * w_frames)),
3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * frame_idx / (num_keyframes * w_frames)),
cam_pivot, radius=cam_radius, device=device)
camera_params = th.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
all_nvs_params.append(camera_params)
self.all_nvs_params = th.cat(all_nvs_params, 0) |