Spaces:
Running
on
Zero
Running
on
Zero
File size: 41,384 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
EPS = 1e-7
import kornia
from typing import Dict, Iterator, List, Optional, Tuple, Union
import torchvision
from guided_diffusion import dist_util, logger
from pdb import set_trace as st
from torch.nn import functional as F
import numpy as np
import torch
import torch.nn as nn
import lpips
from . import *
from .sdfstudio_losses import ScaleAndShiftInvariantLoss
from ldm.util import default, instantiate_from_config
from .vqperceptual import hinge_d_loss, vanilla_d_loss
from torch.autograd import Variable
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
def extract_key(prediction, key):
if isinstance(prediction, dict):
return prediction[key]
return prediction
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15):
super(SILogLoss, self).__init__()
self.name = 'SILog'
self.beta = beta
def forward(self,
input,
target,
mask=None,
interpolate=True,
return_interpolated=False):
# input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(input,
target.shape[-2:],
mode='bilinear',
align_corners=True)
intr_input = input
else:
intr_input = input
if target.ndim == 3:
target = target.unsqueeze(1)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
input = input[mask]
target = target[mask]
# with torch.amp.autocast(enabled=False): # amp causes NaNs in this loss function
alpha = 1e-7
g = torch.log(input + alpha) - torch.log(target + alpha)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
if torch.isnan(loss):
print("Nan SILog loss")
print("input:", input.shape)
print("target:", target.shape)
print("G", torch.sum(torch.isnan(g)))
print("Input min max", torch.min(input), torch.max(input))
print("Target min max", torch.min(target), torch.max(target))
print("Dg", torch.isnan(Dg))
print("loss", torch.isnan(loss))
if not return_interpolated:
return loss
return loss, intr_input
def get_outnorm(x: torch.Tensor, out_norm: str = '') -> torch.Tensor:
""" Common function to get a loss normalization value. Can
normalize by either the batch size ('b'), the number of
channels ('c'), the image size ('i') or combinations
('bi', 'bci', etc)
"""
# b, c, h, w = x.size()
img_shape = x.shape
if not out_norm:
return 1
norm = 1
if 'b' in out_norm:
# normalize by batch size
# norm /= b
norm /= img_shape[0]
if 'c' in out_norm:
# normalize by the number of channels
# norm /= c
norm /= img_shape[-3]
if 'i' in out_norm:
# normalize by image/map size
# norm /= h*w
norm /= img_shape[-1] * img_shape[-2]
return norm
class CharbonnierLoss(torch.nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-6, out_norm: str = 'bci'):
super(CharbonnierLoss, self).__init__()
self.eps = eps
self.out_norm = out_norm
def forward(self, x, y):
norm = get_outnorm(x, self.out_norm)
loss = torch.sum(torch.sqrt((x - y).pow(2) + self.eps**2))
return loss * norm
def feature_vae_loss(feature):
# kld = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)
# feature dim: B C H W
mu = feature.mean(1)
var = feature.var(1)
log_var = torch.log(var)
kld = torch.mean(-0.5 * torch.sum(1 + log_var - mu**2 - var, dim=1), dim=0)
return kld
def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff):
# return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
kl_lambda = max(
min(
min_kl_coeff + (max_kl_coeff - min_kl_coeff) *
(step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
return torch.tensor(kl_lambda, device=dist_util.dev())
def depth_smoothness_loss(alpha_pred, depth_pred):
# from PesonNeRF paper.
# all Tensor shape B 1 H W
geom_loss = (
alpha_pred[..., :-1] * alpha_pred[..., 1:] * (
depth_pred[..., :-1] - depth_pred[..., 1:] # W dim
).square()).mean() # mean of ([8, 1, 64, 63])
geom_loss += (alpha_pred[..., :-1, :] * alpha_pred[..., 1:, :] *
(depth_pred[..., :-1, :] - depth_pred[..., 1:, :]).square()
).mean() # H dim, ([8, 1, 63, 64])
return geom_loss
# https://github.com/elliottwu/unsup3d/blob/master/unsup3d/networks.py#L140
class LPIPSLoss(torch.nn.Module):
def __init__(
self,
loss_weight=1.0,
use_input_norm=True,
range_norm=True,
# n1p1_input=True,
):
super(LPIPSLoss, self).__init__()
# self.perceptual = lpips.LPIPS(net="alex", spatial=False).eval()
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval()
self.loss_weight = loss_weight
self.use_input_norm = use_input_norm
self.range_norm = range_norm
# if self.use_input_norm:
# # the mean is for image with range [0, 1]
# self.register_buffer(
# 'mean',
# torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
# # the std is for image with range [0, 1]
# self.register_buffer(
# 'std',
# torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, pred, target, conf_sigma_percl=None):
# st()
# ! add large image support, only sup 128x128 patch
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous())
return self.loss_weight * lpips_loss.mean()
# mask-aware perceptual loss
class PerceptualLoss(nn.Module):
def __init__(self, requires_grad=False):
super(PerceptualLoss, self).__init__()
mean_rgb = torch.FloatTensor([0.485, 0.456, 0.406])
std_rgb = torch.FloatTensor([0.229, 0.224, 0.225])
self.register_buffer('mean_rgb', mean_rgb)
self.register_buffer('std_rgb', std_rgb)
vgg_pretrained_features = torchvision.models.vgg16(
pretrained=True).features
self.slice1 = nn.Sequential()
self.slice2 = nn.Sequential()
self.slice3 = nn.Sequential()
self.slice4 = nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def normalize(self, x):
out = x / 2 + 0.5
out = (out - self.mean_rgb.view(1, 3, 1, 1)) / self.std_rgb.view(
1, 3, 1, 1)
return out
def __call__(self, im1, im2, mask=None, conf_sigma=None):
im = torch.cat([im1, im2], 0)
im = self.normalize(im) # normalize input
## compute features
feats = []
f = self.slice1(im)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice2(f)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice3(f)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice4(f)
feats += [torch.chunk(f, 2, dim=0)]
losses = []
for f1, f2 in feats[2:3]: # use relu3_3 features only
loss = (f1 - f2)**2
if conf_sigma is not None:
loss = loss / (2 * conf_sigma**2 + EPS) + (conf_sigma +
EPS).log()
if mask is not None:
b, c, h, w = loss.shape
_, _, hm, wm = mask.shape
sh, sw = hm // h, wm // w
mask0 = nn.functional.avg_pool2d(mask,
kernel_size=(sh, sw),
stride=(sh,
sw)).expand_as(loss)
loss = (loss * mask0).sum() / mask0.sum()
else:
loss = loss.mean()
losses += [loss]
return sum(losses)
# add confidence support, unsup3d version
def photometric_loss_laplace(im1, im2, mask=None, conf_sigma=None):
loss = (im1 - im2).abs()
# loss = (im1 - im2).square()
if conf_sigma is not None:
loss = loss * 2**0.5 / (conf_sigma + EPS) + (conf_sigma + EPS).log()
if mask is not None:
mask = mask.expand_as(loss)
loss = (loss * mask).sum() / mask.sum()
else:
loss = loss.mean()
return loss
# gaussian likelihood version, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
# also used in the mask-aware vgg loss
def photometric_loss(im1, im2, mask=None, conf_sigma=None):
# loss = torch.nn.functional.mse_loss(im1, im2, reduce='none')
loss = (im1 - im2).square()
if conf_sigma is not None:
loss = loss / (2 * conf_sigma**2 + EPS) + (conf_sigma + EPS).log()
if mask is not None:
mask = mask.expand_as(loss)
loss = (loss * mask).sum() / mask.sum()
else:
loss = loss.mean()
return loss
class E3DGELossClass(torch.nn.Module):
def __init__(self, device, opt) -> None:
super().__init__()
self.opt = opt
self.device = device
self.criterionImg = {
'mse': torch.nn.MSELoss(),
'l1': torch.nn.L1Loss(),
'charbonnier': CharbonnierLoss(),
}[opt.color_criterion]
self.criterion_latent = {
'mse': torch.nn.MSELoss(),
'l1': torch.nn.L1Loss(),
'vae': feature_vae_loss
}[opt.latent_criterion]
# self.criterionLPIPS = LPIPS(net_type='alex', device=device).eval()
if opt.lpips_lambda > 0:
self.criterionLPIPS = LPIPSLoss(loss_weight=opt.lpips_lambda)
# self.criterionLPIPS = torch.nn.MSELoss()
if opt.id_lambda > 0:
self.criterionID = IDLoss(device=device).eval()
self.id_loss_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
# define 3d rec loss, for occupancy
# self.criterion3d_rec = torch.nn.SmoothL1Loss(reduction='none')
# self.criterion_alpha = torch.nn.SmoothL1Loss()
# self.criterion3d_rec = torch.nn.MSELoss(reduction='none')
self.criterion_alpha = torch.nn.L1Loss()
if self.opt.xyz_lambda > 0:
# self.criterion_xyz = torch.nn.SmoothL1Loss()
self.criterion_xyz = torch.nn.L1Loss() # follow LION, but noisy xyz here...
if self.opt.depth_lambda > 0:
# ! this depth loss not converging, no idea why
self.criterion3d_rec = ScaleAndShiftInvariantLoss(alpha=0.5,
scales=1)
else:
self.criterion3d_rec = torch.nn.SmoothL1Loss(reduction='none')
# self.silog_loss = SILogLoss()
if self.opt.lambda_opa_reg > 0:
# self.beta_mvp_dist = torch.distributions.beta.Beta(torch.tensor(0.5, device=device), torch.tensor(0.5, device=device))
# self.beta_mvp_base_dist = torch.distributions.beta.Beta(torch.tensor(10, device=device), torch.tensor(0.5, device=device)) # force close to 1 for base
# self.beta_mvp_base_dist = torch.distributions.beta.Beta(torch.tensor(0.6, device=device), torch.tensor(0.2, device=device)) # force close to 1 for base
self.beta_mvp_base_dist = torch.distributions.beta.Beta(torch.tensor(0.5, device=device), torch.tensor(0.25, device=device)) # force close to 1 for base
logger.log('init loss class finished', )
def calc_scale_invariant_depth_loss(self, pred_depth: torch.Tensor,
gt_depth: torch.Tensor,
gt_depth_mask: torch.Tensor):
"""apply 3d shape reconstruction supervision. Basically supervise the depth with L1 loss
"""
shape_loss_dict = {}
assert gt_depth_mask is not None
shape_loss = self.criterion3d_rec(pred_depth, gt_depth, gt_depth_mask)
# if shape_loss > 0.2: # hinge loss, avoid ood gradient
# shape_loss = torch.zeros_like(shape_loss)
# else:
shape_loss = shape_loss.clamp(0.04) # g-buffer depth is very noisy
shape_loss *= self.opt.depth_lambda
shape_loss_dict['loss_depth'] = shape_loss
# shape_loss_dict['depth_fgratio'] = gt_depth_mask.mean()
# return l_si, shape_loss_dict
return shape_loss, shape_loss_dict
def calc_depth_loss(self, pred_depth: torch.Tensor, gt_depth: torch.Tensor,
gt_depth_mask: torch.Tensor):
"""apply 3d shape reconstruction supervision. Basically supervise the depth with L1 loss
"""
shape_loss_dict = {}
shape_loss = self.criterion3d_rec(pred_depth, gt_depth)
assert gt_depth_mask is not None
shape_loss *= gt_depth_mask
shape_loss = shape_loss.sum() / gt_depth_mask.sum()
# else:
# shape_loss /= pred_depth.numel()
# l_si = self.silog_loss(pred_depth, gt_depth, mask=None, interpolate=True, return_interpolated=False)
# l_si *= self.opt.depth_lambda
# shape_loss_dict['loss_depth'] = l_si
shape_loss_dict['loss_depth'] = shape_loss.clamp(
min=0, max=0.1) * self.opt.depth_lambda
# shape_loss_dict['loss_depth'] = shape_loss.clamp(
# min=0, max=0.5) * self.opt.depth_lambda
# return l_si, shape_loss_dict
return shape_loss, shape_loss_dict
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def calc_alpha_loss(self, pred_alpha, gt_depth_mask):
# return self.criterionImg(alpha, gt_depth_mask.float())
if gt_depth_mask.ndim == 3:
gt_depth_mask = gt_depth_mask.unsqueeze(1)
if gt_depth_mask.shape[1] == 3:
gt_depth_mask = gt_depth_mask[:, 0:1, ...] # B 1 H W
assert pred_alpha.shape == gt_depth_mask.shape
alpha_loss = self.criterion_alpha(pred_alpha, gt_depth_mask)
# st()
return alpha_loss
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def calc_mask_mse_loss(
self,
input,
gt,
gt_depth_mask,
# conf_sigma=None,
conf_sigma_l1=None,
# conf_sigma_percl=None,
use_fg_ratio=False):
if gt_depth_mask.ndim == 3:
gt_depth_mask = gt_depth_mask.unsqueeze(1).repeat_interleave(3, 1)
else:
assert gt_depth_mask.shape == input.shape
gt_depth_mask = gt_depth_mask.float()
if conf_sigma_l1 is None:
rec_loss = torch.nn.functional.mse_loss(
input.float(), gt.float(),
reduction='none') # 'sum' already divide by batch size n
else:
rec_loss = photometric_loss(
input, gt, gt_depth_mask, conf_sigma_l1
) # ! only cauclate laplace on the foreground, or bg confidence low, large gradient.
return rec_loss
# rec_loss = torch.nn.functional.l1_loss( # for laplace loss
# input.float(), gt.float(),
# reduction='none') # 'sum' already divide by batch size n
# gt_depth_mask = torch.ones_like(gt_depth_mask) # ! DEBUGGING
# if conf_sigma is not None: # from unsup3d, but a L2 version
# rec_loss = rec_loss * 2**0.5 / (conf_sigma + EPS) + (conf_sigma +
# EPS).log()
# return rec_loss.mean()
# rec_loss = torch.exp(-(rec_loss * 2**0.5 / (conf_sigma + EPS))) * 1/(conf_sigma +
# EPS) / (2**0.5)
fg_size = gt_depth_mask.sum()
# fg_ratio = fg_size / torch.ones_like(gt_depth_mask).sum() if use_fg_ratio else 1
fg_loss = rec_loss * gt_depth_mask
fg_loss = fg_loss.sum() / fg_size # * fg_ratio
if self.opt.bg_lamdba > 0:
bg_loss = rec_loss * (1 - gt_depth_mask)
bg_loss = bg_loss.sum() / (1 - gt_depth_mask).sum()
rec_loss = fg_loss + bg_loss * self.opt.bg_lamdba
else:
rec_loss = fg_loss
return rec_loss
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def calc_2d_rec_loss(
self,
input,
gt,
depth_fg_mask,
test_mode=True,
step=1,
ignore_lpips=False,
# conf_sigma=None,
conf_sigma_l1=None,
conf_sigma_percl=None,
pred_alpha=None,
):
opt = self.opt
loss_dict = {}
# logger.log(test_mode)
# logger.log(input.min(), input.max(), gt.min(), gt.max())
if test_mode or not opt.fg_mse:
rec_loss = self.criterionImg(input, gt)
else:
rec_loss = self.calc_mask_mse_loss(
input,
gt,
depth_fg_mask,
conf_sigma_l1=conf_sigma_l1,
)
# conf_sigma_percl=conf_sigma_percl)
# conf_sigma)
# if step == 300:
# st()
if opt.lpips_lambda > 0 and step >= opt.lpips_delay_iter and not ignore_lpips: # tricky solution to avoid NAN in LPIPS loss
# with torch.autocast(device_type='cuda',
# dtype=torch.float16,
# enabled=False):
# if test_mode or not opt.fg_mse: # no need to calculate background lpips for ease of computation
# inp_for_lpips = input * pred_alpha + torch.ones_like(input) * (1-pred_alpha)
# gt_for_lpips = gt * depth_fg_mask + torch.ones_like(gt) * (1-depth_fg_mask)
inp_for_lpips = input * pred_alpha
gt_for_lpips = gt * depth_fg_mask
width = input.shape[-1]
if width == 192: # triplane here
lpips_loss = self.criterionLPIPS( # loss on 128x128 center crop
inp_for_lpips[:, :, width//2-64:width//2+64, width//2-64:width//2+64],
gt_for_lpips[:, :, width//2-64:width//2+64, width//2-64:width//2+64],
conf_sigma_percl=conf_sigma_percl,
)
elif width >256:
# elif width >192:
# lpips_loss = self.criterionLPIPS(
# F.interpolate(inp_for_lpips, (256,256), mode='bilinear'),
# F.interpolate(gt_for_lpips, (256,256), mode='bilinear'),
# conf_sigma_percl=conf_sigma_percl,
# )
# patch = 80
# patch = 128
patch = 144
middle_point = width // 2
lpips_loss = self.criterionLPIPS( # loss on 128x128 center crop
inp_for_lpips[:, :, middle_point-patch:middle_point+patch, middle_point-patch:middle_point+patch],
gt_for_lpips[:, :, middle_point-patch:middle_point+patch, middle_point-patch:middle_point+patch],
conf_sigma_percl=conf_sigma_percl,
)
else: # directly supervise when <= 256
# ! add foreground mask
assert pred_alpha is not None
lpips_loss = self.criterionLPIPS(
inp_for_lpips,
gt_for_lpips,
# conf_sigma_percl=conf_sigma_percl,
)
# else: # fg lpips
# assert depth_fg_mask.shape == input.shape
# lpips_loss = self.criterionLPIPS(
# input.contiguous() * depth_fg_mask,
# gt.contiguous() * depth_fg_mask).mean()
else:
lpips_loss = torch.tensor(0., device=input.device)
if opt.ssim_lambda > 0:
loss_ssim = self.ssim_loss(input, gt) #?
else:
loss_ssim = torch.tensor(0., device=input.device)
loss_psnr = self.psnr((input / 2 + 0.5), (gt / 2 + 0.5), 1.0)
if opt.id_lambda > 0:
loss_id = self._calc_loss_id(input, gt)
else:
loss_id = torch.tensor(0., device=input.device)
if opt.l1_lambda > 0:
loss_l1 = F.l1_loss(input, gt)
else:
loss_l1 = torch.tensor(0., device=input.device)
# loss = rec_loss * opt.l2_lambda + lpips_loss * opt.lpips_lambda + loss_id * opt.id_lambda + loss_ssim * opt.ssim_lambda
rec_loss = rec_loss * opt.l2_lambda
loss = rec_loss + lpips_loss + loss_id * opt.id_lambda + loss_ssim * opt.ssim_lambda + opt.l1_lambda * loss_l1
# if return_dict:
loss_dict['loss_l2'] = rec_loss
loss_dict['loss_id'] = loss_id
loss_dict['loss_lpips'] = lpips_loss
loss_dict['loss'] = loss
loss_dict['loss_ssim'] = loss_ssim
# metrics to report, not involved in training
loss_dict['mae'] = loss_l1
loss_dict['PSNR'] = loss_psnr
loss_dict['SSIM'] = 1 - loss_ssim # Todo
loss_dict['ID_SIM'] = 1 - loss_id
return loss, loss_dict
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def calc_shape_rec_loss(
self,
pred_shape: dict,
gt_shape: dict,
device,
):
"""apply 3d shape reconstruction supervision. Basically supervise the densities with L1 loss
Args:
pred_shape (dict): dict contains reconstructed shape information
gt_shape (dict): dict contains gt shape information
supervise_sdf (bool, optional): whether supervise sdf rec. Defaults to True.
supervise_surface_normal (bool, optional): whether supervise surface rec. Defaults to False.
Returns:
dict: shape reconstruction loss
"""
shape_loss_dict = {}
shape_loss = 0
# assert supervise_sdf or supervise_surface_normal, 'should at least supervise one types of shape reconstruction'
# todo, add weights
if self.opt.shape_uniform_lambda > 0:
shape_loss_dict['coarse'] = self.criterion3d_rec(
pred_shape['coarse_densities'].squeeze(),
gt_shape['coarse_densities'].squeeze())
shape_loss += shape_loss_dict[
'coarse'] * self.opt.shape_uniform_lambda
if self.opt.shape_importance_lambda > 0:
shape_loss_dict['fine'] = self.criterion3d_rec(
pred_shape['fine_densities'].squeeze(), # ? how to supervise
gt_shape['fine_densities'].squeeze())
shape_loss += shape_loss_dict[
'fine'] * self.opt.shape_importance_lambda
loss_depth = self.criterion_alpha(pred_shape['image_depth'],
gt_shape['image_depth'])
shape_loss += loss_depth * self.opt.shape_depth_lambda
shape_loss_dict.update(dict(loss_depth=loss_depth))
# TODO, add on surface pts supervision ?
return shape_loss, shape_loss_dict
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def psnr(self, input, target, max_val):
return kornia.metrics.psnr(input, target, max_val)
# @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def ssim_loss(self, img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return 1 - _ssim(img1, img2, window, window_size, channel, size_average)
@torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
def forward(self,
pred,
gt,
test_mode=True,
step=1,
return_fg_mask=False,
conf_sigma_l1=None,
conf_sigma_percl=None,
ignore_kl=False,
ignore_lpips=False,
*args,
**kwargs):
with torch.autocast(device_type='cuda',
dtype=torch.float16,
enabled=False):
loss = torch.tensor(0., device=self.device)
loss_dict = {}
if 'image_mask' in pred:
pred_alpha = pred['image_mask'] # B 1 H W
else:
N, _, H, W = pred['image_depth'].shape
pred_alpha = pred['weights_samples'].permute(0, 2, 1).reshape(
N, 1, H, W)
# balance rec_loss with logvar
# if 'depth_mask' in gt:
if self.opt.online_mask:
# https://github.com/elliottwu/unsup3d/blob/dc961410d61684561f19525c2f7e9ee6f4dacb91/unsup3d/model.py#L193
margin = (self.opt.max_depth - self.opt.min_depth) / 2
fg_mask = (pred['image_depth']
< self.opt.max_depth + margin).float() # B 1 H W
fg_mask = fg_mask.repeat_interleave(3, 1).float()
else:
if 'depth_mask' in gt:
if gt['depth_mask'].shape[1] != 1:
fg_mask = gt['depth_mask'].unsqueeze(1)
else:
fg_mask = gt['depth_mask']
fg_mask = fg_mask.repeat_interleave(
3, 1).float()
else:
fg_mask = None
loss_2d, loss_2d_dict = self.calc_2d_rec_loss(
pred['image_raw'],
gt['img'],
fg_mask,
test_mode=test_mode,
step=step,
ignore_lpips=ignore_lpips,
conf_sigma_l1=conf_sigma_l1,
conf_sigma_percl=conf_sigma_percl,
pred_alpha=pred_alpha,
)
# ignore_lpips=self.opt.fg_mse)
if self.opt.kl_lambda > 0 and not ignore_kl:
# assert 'posterior' in pred, 'logvar' in pred
assert 'posterior' in pred
if self.opt.kl_anneal:
kl_lambda = kl_coeff(
step=step,
constant_step=5e3, # 1w steps
total_step=25e3, # 5w steps in total
min_kl_coeff=max(1e-9, self.opt.kl_lambda / 1e4),
max_kl_coeff=self.opt.kl_lambda)
loss_dict['kl_lambda'] = kl_lambda
else:
loss_dict['kl_lambda'] = torch.tensor(
self.opt.kl_lambda, device=dist_util.dev())
if self.opt.pt_ft_kl:
pt_kl, ft_kl = pred['posterior'].kl(pt_ft_separate=True)
kl_batch = pt_kl.shape[0]
# loss_dict['kl_loss_pt'] = pt_kl.sum() * loss_dict['kl_lambda'] * 0.01 / kl_batch
loss_dict['kl_loss_pt'] = pt_kl.sum() * loss_dict['kl_lambda'] * 0 # no compression at all.
loss_dict['kl_loss_ft'] = ft_kl.sum() * loss_dict['kl_lambda'] / kl_batch
loss = loss + loss_dict['kl_loss_pt'] + loss_dict['kl_loss_ft']
loss_dict['latent_mu_pt'] = pred['posterior'].mean[:, :3].mean()
loss_dict['latent_std_pt'] = pred['posterior'].std[:, :3].mean()
loss_dict['latent_mu_ft'] = pred['posterior'].mean[:, 3:].mean()
loss_dict['latent_std_ft'] = pred['posterior'].std[:, 3:].mean()
elif self.opt.ft_kl:
ft_kl = pred['posterior'].kl(ft_separate=True)
kl_batch = ft_kl.shape[0]
loss_dict['kl_loss_ft'] = ft_kl.sum() * loss_dict['kl_lambda'] / kl_batch
loss = loss + loss_dict['kl_loss_ft']
loss_dict['latent_mu_ft'] = pred['posterior'].mean[:, :].square().mean().float().detach()
loss_dict['latent_std_ft'] = pred['posterior'].std[:, :].mean().float().detach()
else:
kl_loss = pred['posterior'].kl()
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
loss_dict['kl_loss'] = kl_loss * loss_dict['kl_lambda']
loss += loss_dict['kl_loss']
loss_dict['latent_mu'] = pred['posterior'].mean.mean()
loss_dict['latent_std'] = pred['posterior'].std.mean()
# nll_loss = loss_2d / torch.exp(pred['logvar']) + pred['logvar'] # nll_loss
nll_loss = loss_2d
loss += nll_loss
loss_dict.update(dict(nll_loss=nll_loss))
# loss_dict['latent_mu'] = pred['latent_normalized'].mean()
# loss_dict['latent_max'] = pred['latent_normalized'].max()
# loss_dict['latent_min'] = pred['latent_normalized'].min()
# loss_dict['latent_std'] = pred['latent_normalized'].std()
# pred[
# 'latent_normalized_2Ddiffusion'].mean()
# loss_dict['latent_std'] = pred[
# 'latent_normalized_2Ddiffusion'].std()
# loss_dict['latent_max'] = pred[
# 'latent_normalized_2Ddiffusion'].max()
# loss_dict['latent_min'] = pred[
# 'latent_normalized_2Ddiffusion'].min()
else:
loss += loss_2d
# if 'image_sr' in pred and pred['image_sr'].shape==gt['img_sr']:
if 'image_sr' in pred:
if 'depth_mask_sr' in gt:
depth_mask_sr = gt['depth_mask_sr'].unsqueeze(
1).repeat_interleave(3, 1).float()
else:
depth_mask_sr = None
loss_sr, loss_sr_dict = self.calc_2d_rec_loss(
pred['image_sr'],
gt['img_sr'],
depth_fg_mask=depth_mask_sr,
# test_mode=test_mode,
test_mode=True,
step=step)
loss_sr_lambda = 1
if step < self.opt.sr_delay_iter:
loss_sr_lambda = 0
loss += loss_sr * loss_sr_lambda
for k, v in loss_sr_dict.items():
loss_dict['sr_' + k] = v * loss_sr_lambda
if self.opt.depth_lambda > 0: # TODO, switch to scale-agnostic depth loss
assert 'depth' in gt
pred_depth = pred['image_depth']
if pred_depth.ndim == 4:
pred_depth = pred_depth.squeeze(1) # B H W
# _, shape_loss_dict = self.calc_depth_loss(
# pred_depth, gt['depth'], fg_mask[:, 0, ...])
_, shape_loss_dict = self.calc_scale_invariant_depth_loss(
pred_depth, gt['depth'], fg_mask[:, 0, ...])
loss += shape_loss_dict['loss_depth']
loss_dict.update(shape_loss_dict)
# if self.opt.latent_lambda > 0: # make sure the latent suits diffusion learning
# latent_mu = pred['latent'].mean()
# loss_latent = self.criterion_latent(
# latent_mu, torch.zeros_like(
# latent_mu)) # only regularize the mean value here
# loss_dict['loss_latent'] = loss_latent
# loss += loss_latent * self.opt.latent_lambda
if self.opt.alpha_lambda > 0 and 'image_depth' in pred:
loss_alpha = self.calc_alpha_loss(pred_alpha, fg_mask)
loss_dict['loss_alpha'] = loss_alpha * self.opt.alpha_lambda
loss += loss_alpha * self.opt.alpha_lambda
if self.opt.depth_smoothness_lambda > 0:
loss_depth_smoothness = depth_smoothness_loss(
pred_alpha,
pred['image_depth']) * self.opt.depth_smoothness_lambda
loss_dict['loss_depth_smoothness'] = loss_depth_smoothness
loss += loss_depth_smoothness
loss_2d_dict['all_loss'] = loss
loss_dict.update(loss_2d_dict)
# if return_fg_mask:
return loss, loss_dict, fg_mask
# else:
# return loss, loss_dict
def _calc_loss_id(self, input, gt):
if input.shape[-1] != 256:
arcface_input = self.id_loss_pool(input)
id_loss_gt = self.id_loss_pool(gt)
else:
arcface_input = input
id_loss_gt = gt
loss_id, _, _ = self.criterionID(arcface_input, id_loss_gt, id_loss_gt)
return loss_id
def calc_2d_rec_loss_misaligned(self, input, gt):
"""id loss + vgg loss
Args:
input (_type_): _description_
gt (_type_): _description_
depth_mask (_type_): _description_
test_mode (bool, optional): _description_. Defaults to True.
"""
opt = self.opt
loss_dict = {}
if opt.lpips_lambda > 0:
with torch.autocast(
device_type='cuda', dtype=torch.float16,
enabled=False): # close AMP for lpips to avoid nan
lpips_loss = self.criterionLPIPS(input, gt)
else:
lpips_loss = torch.tensor(0., device=input.device)
if opt.id_lambda > 0:
loss_id = self._calc_loss_id(input, gt)
else:
loss_id = torch.tensor(0., device=input.device)
loss_dict['loss_id_real'] = loss_id
loss_dict['loss_lpips_real'] = lpips_loss
loss = lpips_loss * opt.lpips_lambda + loss_id * opt.id_lambda
return loss, loss_dict
class E3DGE_with_AdvLoss(E3DGELossClass):
# adapted from sgm/modules/autoencoding/losses/discriminator_loss.py
def __init__(
self,
device,
opt,
discriminator_config: Optional[Dict] = None,
disc_num_layers: int = 3,
disc_in_channels: int = 3,
disc_start: int = 0,
disc_loss: str = "hinge",
disc_factor: float = 1.0,
disc_weight: float = 1.0,
regularization_weights: Union[None, Dict[str, float]] = None,
dtype=torch.float32,
# additional_log_keys: Optional[List[str]] = None,
) -> None:
super().__init__(
device,
opt,
)
# ! initialize GAN loss
discriminator_config = default(
discriminator_config,
{
"target":
"nsr.losses.disc.NLayerDiscriminator",
"params": {
"input_nc": disc_in_channels,
"n_layers": disc_num_layers,
"use_actnorm": False,
},
},
)
self.discriminator = instantiate_from_config(
discriminator_config).apply(weights_init)
self.discriminator_iter_start = disc_start
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight # self.regularization_weights = default(regularization_weights, {})
# self.forward_keys = [
# "optimizer_idx",
# "global_step",
# "last_layer",
# "split",
# "regularization_log",
# ]
# self.additional_log_keys = set(default(additional_log_keys, []))
# self.additional_log_keys.update(set(
# self.regularization_weights.keys()))
def get_trainable_parameters(self) -> Iterator[nn.Parameter]:
return self.discriminator.parameters()
def forward(self,
pred,
gt,
behaviour: str,
test_mode=True,
step=1,
return_fg_mask=False,
conf_sigma_l1=None,
conf_sigma_percl=None,
ignore_d_loss=False,
*args,
**kwargs):
# now the GAN part
reconstructions = pred['image_raw']
inputs = gt['img']
if behaviour == 'g_step':
nll_loss, loss_dict, fg_mask = super().forward(
pred,
gt,
test_mode,
step,
return_fg_mask,
conf_sigma_l1,
conf_sigma_percl,
*args,
**kwargs)
# generator update
if not ignore_d_loss and (step >= self.discriminator_iter_start or not self.training):
logits_fake = self.discriminator(reconstructions.contiguous())
g_loss = -torch.mean(logits_fake)
if self.training:
d_weight = torch.tensor(self.discriminator_weight)
# d_weight = self.calculate_adaptive_weight(
# nll_loss, g_loss, last_layer=last_layer)
else:
d_weight = torch.tensor(1.0)
else:
d_weight = torch.tensor(0.0)
g_loss = torch.tensor(0.0, requires_grad=True)
g_loss = g_loss * d_weight * self.disc_factor
loss = nll_loss + g_loss
# TODO
loss_dict.update({
f"loss/g": g_loss.detach().mean(),
})
# return loss, log
return loss, loss_dict, fg_mask
elif behaviour == 'd_step' and not ignore_d_loss:
# second pass for discriminator update
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(
reconstructions.contiguous().detach())
if step >= self.discriminator_iter_start or not self.training:
d_loss = self.disc_factor * self.disc_loss(
logits_real, logits_fake)
else:
d_loss = torch.tensor(0.0, requires_grad=True)
loss_dict = {}
loss_dict.update({
"loss/disc": d_loss.clone().detach().mean(),
"logits/real": logits_real.detach().mean(),
"logits/fake": logits_fake.detach().mean(),
})
return d_loss, loss_dict, None
else:
raise NotImplementedError(f"Unknown optimizer behaviour {behaviour}")
|