File size: 22,211 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Streaming images and labels from datasets created with dataset_tool.py."""

import cv2
import os
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
from torchvision import transforms

from pdb import set_trace as st

from .shapenet import LMDBDataset_MV_Compressed, decompress_array

try:
    import pyspng
except ImportError:
    pyspng = None

#----------------------------------------------------------------------------


# copide from eg3d/train.py
def init_dataset_kwargs(data,
                        class_name='datasets.eg3d_dataset.ImageFolderDataset',
                        reso_gt=128):
    # try:
    # if data == 'None':
    #     dataset_kwargs = dnnlib.EasyDict({})  #
    #     dataset_kwargs.name = 'eg3d_dataset'
    #     dataset_kwargs.resolution = 128
    #     dataset_kwargs.use_labels = False
    #     dataset_kwargs.max_size = 70000
    #     return dataset_kwargs, 'eg3d_dataset'

    dataset_kwargs = dnnlib.EasyDict(class_name=class_name,
                                     reso_gt=reso_gt,
                                     path=data,
                                     use_labels=True,
                                     max_size=None,
                                     xflip=False)
    dataset_obj = dnnlib.util.construct_class_by_name(
        **dataset_kwargs)  # Subclass of training.dataset.Dataset.
    dataset_kwargs.resolution = dataset_obj.resolution  # Be explicit about resolution.
    dataset_kwargs.use_labels = dataset_obj.has_labels  # Be explicit about labels.
    dataset_kwargs.max_size = len(
        dataset_obj)  # Be explicit about dataset size.

    return dataset_kwargs, dataset_obj.name
    # except IOError as err:
    #     raise click.ClickException(f'--data: {err}')


class Dataset(torch.utils.data.Dataset):

    def __init__(
            self,
            name,  # Name of the dataset.
            raw_shape,  # Shape of the raw image data (NCHW).
            reso_gt=128,
            max_size=None,  # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
            use_labels=False,  # Enable conditioning labels? False = label dimension is zero.
            xflip=False,  # Artificially double the size of the dataset via x-flips. Applied after max_size.
            random_seed=0,  # Random seed to use when applying max_size.
    ):
        self._name = name
        self._raw_shape = list(raw_shape)
        self._use_labels = use_labels
        self._raw_labels = None
        self._label_shape = None

        # self.reso_gt = 128
        self.reso_gt = reso_gt  # ! hard coded
        self.reso_encoder = 224

        # Apply max_size.
        self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
        # self._raw_idx = np.arange(self.__len__(), dtype=np.int64)
        if (max_size is not None) and (self._raw_idx.size > max_size):
            np.random.RandomState(random_seed).shuffle(self._raw_idx)
            self._raw_idx = np.sort(self._raw_idx[:max_size])

        # Apply xflip.
        self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
        if xflip:
            self._raw_idx = np.tile(self._raw_idx, 2)
            self._xflip = np.concatenate(
                [self._xflip, np.ones_like(self._xflip)])

        # dino encoder normalizer
        self.normalize_for_encoder_input = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
            transforms.Resize(size=(self.reso_encoder, self.reso_encoder),
                              antialias=True),  # type: ignore
        ])

        self.normalize_for_gt = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            transforms.Resize(size=(self.reso_gt, self.reso_gt),
                              antialias=True),  # type: ignore
        ])

    def _get_raw_labels(self):
        if self._raw_labels is None:
            self._raw_labels = self._load_raw_labels(
            ) if self._use_labels else None
            if self._raw_labels is None:
                self._raw_labels = np.zeros([self._raw_shape[0], 0],
                                            dtype=np.float32)
            assert isinstance(self._raw_labels, np.ndarray)
            # assert self._raw_labels.shape[0] == self._raw_shape[0]
            assert self._raw_labels.dtype in [np.float32, np.int64]
            if self._raw_labels.dtype == np.int64:
                assert self._raw_labels.ndim == 1
                assert np.all(self._raw_labels >= 0)
            self._raw_labels_std = self._raw_labels.std(0)
        return self._raw_labels

    def close(self):  # to be overridden by subclass
        pass

    def _load_raw_image(self, raw_idx):  # to be overridden by subclass
        raise NotImplementedError

    def _load_raw_labels(self):  # to be overridden by subclass
        raise NotImplementedError

    def __getstate__(self):
        return dict(self.__dict__, _raw_labels=None)

    def __del__(self):
        try:
            self.close()
        except:
            pass

    def __len__(self):
        return self._raw_idx.size
        # return self._get_raw_labels().shape[0]

    def __getitem__(self, idx):
        # print(self._raw_idx[idx], idx)

        matte = self._load_raw_matte(self._raw_idx[idx])
        assert isinstance(matte, np.ndarray)
        assert list(matte.shape)[1:] == self.image_shape[1:]
        if self._xflip[idx]:
            assert matte.ndim == 1  # CHW
            matte = matte[:, :, ::-1]
        # matte_orig = matte.copy().astype(np.float32) / 255
        matte_orig = matte.copy().astype(np.float32) # segmentation version
        # assert matte_orig.max() == 1
        matte = np.transpose(matte,
                            #  (1, 2, 0)).astype(np.float32) / 255  # [0,1] range
                             (1, 2, 0)).astype(np.float32)  # [0,1] range
        matte = cv2.resize(matte, (self.reso_gt, self.reso_gt),
                           interpolation=cv2.INTER_NEAREST)
        assert matte.min() >= 0 and matte.max(
        ) <= 1, f'{matte.min(), matte.max()}'

        if matte.ndim == 3:  # H, W
            matte = matte[..., 0]

        image = self._load_raw_image(self._raw_idx[idx])

        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert image.dtype == np.uint8
        if self._xflip[idx]:
            assert image.ndim == 3  # CHW
            image = image[:, :, ::-1]

        # blending
        # blending = True
        blending = False
        if blending:
            image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur(
                image, (5, 5), cv2.BORDER_DEFAULT)
            # image = image * matte_orig

        image = np.transpose(image, (1, 2, 0)).astype(
            np.float32
        ) / 255  # H W C for torchvision process, normalize to [0,1]

        image_sr = torch.from_numpy(image)[..., :3].permute(
            2, 0, 1) * 2 - 1  # normalize to [-1,1]
        image_to_encoder = self.normalize_for_encoder_input(image)

        image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt),
                              interpolation=cv2.INTER_AREA)
        image_gt = torch.from_numpy(image_gt)[..., :3].permute(
            2, 0, 1) * 2 - 1  # normalize to [-1,1]

        return dict(
            c=self.get_label(idx),
            img_to_encoder=image_to_encoder,  # 224
            img_sr=image_sr,  # 512
            img=image_gt,  # [-1,1] range
            # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore
            depth=matte,
            depth_mask=matte,
            # depth_mask=matte > 0,
            # alpha=matte,
        )  # return dict here

    def get_label(self, idx):
        label = self._get_raw_labels()[self._raw_idx[idx]]
        if label.dtype == np.int64:
            onehot = np.zeros(self.label_shape, dtype=np.float32)
            onehot[label] = 1
            label = onehot
        return label.copy()

    def get_details(self, idx):
        d = dnnlib.EasyDict()
        d.raw_idx = int(self._raw_idx[idx])
        d.xflip = (int(self._xflip[idx]) != 0)
        d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
        return d

    def get_label_std(self):
        return self._raw_labels_std

    @property
    def name(self):
        return self._name

    @property
    def image_shape(self):
        return list(self._raw_shape[1:])

    @property
    def num_channels(self):
        assert len(self.image_shape) == 3  # CHW
        return self.image_shape[0]

    @property
    def resolution(self):
        assert len(self.image_shape) == 3  # CHW
        assert self.image_shape[1] == self.image_shape[2]
        return self.image_shape[1]

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._get_raw_labels()
            if raw_labels.dtype == np.int64:
                self._label_shape = [int(np.max(raw_labels)) + 1]
            else:
                self._label_shape = raw_labels.shape[1:]
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._get_raw_labels().dtype == np.int64


#----------------------------------------------------------------------------


class ImageFolderDataset(Dataset):

    def __init__(
            self,
            path,  # Path to directory or zip.
            resolution=None,  # Ensure specific resolution, None = highest available.
            reso_gt=128,
            **super_kwargs,  # Additional arguments for the Dataset base class.
    ):
        self._path = path
        self._matte_path = path.replace('unzipped_ffhq_512',
                                        'unzipped_ffhq_matte')
        # self._matte_path = path.replace('unzipped_ffhq_512',
        #                                 'ffhq_512_seg')
        self._zipfile = None

        if os.path.isdir(self._path):
            self._type = 'dir'
            self._all_fnames = {
                os.path.relpath(os.path.join(root, fname), start=self._path)
                for root, _dirs, files in os.walk(self._path)
                for fname in files
            }
        elif self._file_ext(self._path) == '.zip':
            self._type = 'zip'
            self._all_fnames = set(self._get_zipfile().namelist())
        else:
            raise IOError('Path must point to a directory or zip')

        PIL.Image.init()
        self._image_fnames = sorted(
            fname for fname in self._all_fnames
            if self._file_ext(fname) in PIL.Image.EXTENSION)
        if len(self._image_fnames) == 0:
            raise IOError('No image files found in the specified path')

        name = os.path.splitext(os.path.basename(self._path))[0]
        raw_shape = [len(self._image_fnames)] + list(
            self._load_raw_image(0).shape)
        # raw_shape = [len(self._image_fnames)] + list(
        #     self._load_raw_image(0).shape)
        if resolution is not None and (raw_shape[2] != resolution
                                       or raw_shape[3] != resolution):
            raise IOError('Image files do not match the specified resolution')
        super().__init__(name=name,
                         raw_shape=raw_shape,
                         reso_gt=reso_gt,
                         **super_kwargs)

    @staticmethod
    def _file_ext(fname):
        return os.path.splitext(fname)[1].lower()

    def _get_zipfile(self):
        assert self._type == 'zip'
        if self._zipfile is None:
            self._zipfile = zipfile.ZipFile(self._path)
        return self._zipfile

    def _open_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(self._path, fname), 'rb')
        if self._type == 'zip':
            return self._get_zipfile().open(fname, 'r')
        return None

    def _open_matte_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(self._matte_path, fname), 'rb')
        # if self._type == 'zip':
        #     return self._get_zipfile().open(fname, 'r')
        # return None

    def close(self):
        try:
            if self._zipfile is not None:
                self._zipfile.close()
        finally:
            self._zipfile = None

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_image(self, raw_idx):
        fname = self._image_fnames[raw_idx]
        with self._open_file(fname) as f:
            if pyspng is not None and self._file_ext(fname) == '.png':
                image = pyspng.load(f.read())
            else:
                image = np.array(PIL.Image.open(f))
        if image.ndim == 2:
            image = image[:, :, np.newaxis]  # HW => HWC
        image = image.transpose(2, 0, 1)  # HWC => CHW
        return image

    def _load_raw_matte(self, raw_idx):
        # ! from seg version
        fname = self._image_fnames[raw_idx]
        with self._open_matte_file(fname) as f:
            if pyspng is not None and self._file_ext(fname) == '.png':
                image = pyspng.load(f.read())
            else:
                image = np.array(PIL.Image.open(f))
        # if image.max() != 1:
        image = (image > 0).astype(np.float32) # process segmentation
        if image.ndim == 2:
            image = image[:, :, np.newaxis]  # HW => HWC
        image = image.transpose(2, 0, 1)  # HWC => CHW
        return image

    def _load_raw_matte_orig(self, raw_idx):
        fname = self._image_fnames[raw_idx]
        with self._open_matte_file(fname) as f:
            if pyspng is not None and self._file_ext(fname) == '.png':
                image = pyspng.load(f.read())
            else:
                image = np.array(PIL.Image.open(f))
        st() # process segmentation
        if image.ndim == 2:
            image = image[:, :, np.newaxis]  # HW => HWC
        image = image.transpose(2, 0, 1)  # HWC => CHW
        return image

    def _load_raw_labels(self):
        fname = 'dataset.json'
        if fname not in self._all_fnames:
            return None
        with self._open_file(fname) as f:
            # st()
            labels = json.load(f)['labels']
        if labels is None:
            return None
        labels = dict(labels)
        labels_ = []
        for fname, _ in labels.items():
            # if 'mirror' not in fname:
            labels_.append(labels[fname])
        labels = labels_
        # !
        # labels = [
        #     labels[fname.replace('\\', '/')] for fname in self._image_fnames
        # ]
        labels = np.array(labels)
        labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
        self._raw_labels = labels
        return labels


#----------------------------------------------------------------------------


# class ImageFolderDatasetUnzipped(ImageFolderDataset):

#     def __init__(self, path, resolution=None, **super_kwargs):
#         super().__init__(path, resolution, **super_kwargs)


# class ImageFolderDatasetPose(ImageFolderDataset):

#     def __init__(
#             self,
#             path,  # Path to directory or zip.
#             resolution=None,  # Ensure specific resolution, None = highest available.
#             **super_kwargs,  # Additional arguments for the Dataset base class.
#     ):
#         super().__init__(path, resolution, **super_kwargs)
#         # only return labels

#     def __len__(self):
#         return self._raw_idx.size
#         # return self._get_raw_labels().shape[0]

#     def __getitem__(self, idx):
#         # image = self._load_raw_image(self._raw_idx[idx])
#         # assert isinstance(image, np.ndarray)
#         # assert list(image.shape) == self.image_shape
#         # assert image.dtype == np.uint8
#         # if self._xflip[idx]:
#         # assert image.ndim == 3  # CHW
#         # image = image[:, :, ::-1]
#         return dict(c=self.get_label(idx), )  # return dict here


class ImageFolderDatasetLMDB(ImageFolderDataset):
    def __init__(self, path, resolution=None, reso_gt=128, **super_kwargs):
        super().__init__(path, resolution, reso_gt, **super_kwargs)
    
    def __getitem__(self, idx):
        # print(self._raw_idx[idx], idx)

        matte = self._load_raw_matte(self._raw_idx[idx])
        assert isinstance(matte, np.ndarray)
        assert list(matte.shape)[1:] == self.image_shape[1:]
        if self._xflip[idx]:
            assert matte.ndim == 1  # CHW
            matte = matte[:, :, ::-1]
        # matte_orig = matte.copy().astype(np.float32) / 255
        matte_orig = matte.copy().astype(np.float32) # segmentation version
        assert matte_orig.max() <= 1 # some ffhq images are dirty, so may be all zero
        matte = np.transpose(matte,
                            #  (1, 2, 0)).astype(np.float32) / 255  # [0,1] range
                             (1, 2, 0)).astype(np.float32)  # [0,1] range

        # ! load 512 matte
        # matte = cv2.resize(matte, (self.reso_gt, self.reso_gt),
        #                    interpolation=cv2.INTER_NEAREST)

        assert matte.min() >= 0 and matte.max(
        ) <= 1, f'{matte.min(), matte.max()}'

        if matte.ndim == 3:  # H, W
            matte = matte[..., 0]

        image = self._load_raw_image(self._raw_idx[idx])

        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert image.dtype == np.uint8
        if self._xflip[idx]:
            assert image.ndim == 3  # CHW
            image = image[:, :, ::-1]

        # blending
        # blending = True
        # blending = False
        # if blending:
        #     image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur(
        #         image, (5, 5), cv2.BORDER_DEFAULT)
            # image = image * matte_orig

        # image = np.transpose(image, (1, 2, 0)).astype(
        #     np.float32
        # ) / 255  # H W C for torchvision process, normalize to [0,1]

        # image_sr = torch.from_numpy(image)[..., :3].permute(
        #     2, 0, 1) * 2 - 1  # normalize to [-1,1]
        # image_to_encoder = self.normalize_for_encoder_input(image)

        # image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt),
        #                       interpolation=cv2.INTER_AREA)
        # image_gt = torch.from_numpy(image_gt)[..., :3].permute(
        #     2, 0, 1) * 2 - 1  # normalize to [-1,1]

        return dict(
            c=self.get_label(idx),
            # img_to_encoder=image_to_encoder,  # 224
            # img_sr=image_sr,  # 512
            img=image,  # [-1,1] range
            # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore
            # depth=matte,
            depth_mask=matte,
        )  # return dict here

class LMDBDataset_MV_Compressed_eg3d(LMDBDataset_MV_Compressed):

    def __init__(self,
                 lmdb_path,
                 reso,
                 reso_encoder,
                 imgnet_normalize=True,
                 **kwargs):
        super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize,
                         **kwargs)

        self.normalize_for_encoder_input = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
            transforms.Resize(size=(self.reso_encoder, self.reso_encoder),
                              antialias=True),  # type: ignore
        ])

        self.normalize_for_gt = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            transforms.Resize(size=(self.reso, self.reso),
                              antialias=True),  # type: ignore
        ])

    def __getitem__(self, idx):
        # sample = super(LMDBDataset).__getitem__(idx)

        # do gzip uncompress online
        with self.env.begin(write=False) as txn:
            img_key = f'{idx}-img'.encode('utf-8')
            image = self.load_image_fn(txn.get(img_key))

            depth_key = f'{idx}-depth_mask'.encode('utf-8')
            # depth = decompress_array(txn.get(depth_key), (512,512), np.float32)
            depth = decompress_array(txn.get(depth_key), (64,64), np.float32)

            c_key = f'{idx}-c'.encode('utf-8')
            c = decompress_array(txn.get(c_key), (25, ), np.float32)

        # ! post processing, e.g., normalizing
        depth = cv2.resize(depth, (self.reso, self.reso),
                           interpolation=cv2.INTER_NEAREST)

        image = np.transpose(image, (1, 2, 0)).astype(
            np.float32
        ) / 255  # H W C for torchvision process, normalize to [0,1]

        image_sr = torch.from_numpy(image)[..., :3].permute(
            2, 0, 1) * 2 - 1  # normalize to [-1,1]
        image_to_encoder = self.normalize_for_encoder_input(image)

        image_gt = cv2.resize(image, (self.reso, self.reso),
                              interpolation=cv2.INTER_AREA)
        image_gt = torch.from_numpy(image_gt)[..., :3].permute(
            2, 0, 1) * 2 - 1  # normalize to [-1,1]


        return {
            'img_to_encoder': image_to_encoder,  # 224
            'img_sr': image_sr,  # 512
            'img': image_gt,  # [-1,1] range
            'c': c,
            'depth': depth,
            'depth_mask': depth,
        }