Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,693 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# modified from : 2dgs/gaussian_renderer/__init__.py
import numpy as np
from pdb import set_trace as st
import torch
import torch.nn as nn
import torch.nn.functional as F
# from diff_gaussian_rasterization import (
# GaussianRasterizationSettings,
# GaussianRasterizer,
# )
from torch.profiler import profile, record_function, ProfilerActivity
from diff_surfel_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from utils.point_utils import depth_to_normal, depth_to_normal_2
import kiui
class GaussianRenderer2DGS:
def __init__(self, output_size, out_chans, rendering_kwargs, **kwargs):
# self.opt = opt
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
# self.bg_color = torch.tensor([0,0,1], dtype=torch.float32, device="cuda")
self.output_size = output_size
self.out_chans = out_chans
self.rendering_kwargs = rendering_kwargs
# intrinsics
# self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
# self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
# self.proj_matrix[0, 0] = 1 / self.tan_half_fov
# self.proj_matrix[1, 1] = 1 / self.tan_half_fov
# self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
# self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
# self.proj_matrix[2, 3] = 1
def render(self, gaussians, cam_view, cam_view_proj, cam_pos, tanfov, bg_color=None, scale_modifier=1, output_size=None):
# gaussians: [B, N, 14-1]
# cam_view, cam_view_proj: [B, V, 4, 4]
# cam_pos: [B, V, 3]
if output_size is None:
output_size = self.output_size
device = gaussians.device
B, V = cam_view.shape[:2]
assert gaussians.shape[2] == 13 # scale with 2dof
gaussians = gaussians.contiguous().float() # gs rendering in fp32
# loop of loop...
images = []
alphas = []
depths = []
# surf_normals = []
rend_normals = []
dists = []
if bg_color is None:
bg_color = self.bg_color
for b in range(B):
# pos, opacity, scale, rotation, shs
means3D = gaussians[b, :, 0:3].contiguous().float()
opacity = gaussians[b, :, 3:4].contiguous().float()
scales = gaussians[b, :, 4:6].contiguous().float()
rotations = gaussians[b, :, 6:10].contiguous().float()
rgbs = gaussians[b, :, 10:13].contiguous().float() # [N, 3]
for v in range(V):
# render novel views
view_matrix = cam_view[b, v].float() # world_view_transform
view_proj_matrix = cam_view_proj[b, v].float()
campos = cam_pos[b, v].float()
# with profile(activities=[ProfilerActivity.CUDA, ProfilerActivity.CPU,], record_shapes=True) as prof:
# with record_function("rendering"):
raster_settings = GaussianRasterizationSettings(
image_height=output_size,
image_width=output_size,
tanfovx=tanfov,
tanfovy=tanfov,
bg=bg_color,
scale_modifier=scale_modifier,
viewmatrix=view_matrix,
projmatrix=view_proj_matrix,
sh_degree=0,
campos=campos,
prefiltered=False,
debug=False,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
# rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
rendered_image, radii, allmap = rasterizer(
means3D=means3D,
means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
shs=None,
colors_precomp=rgbs,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=None,
# cov3D_precomp = cov3D_precomp
)
# print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=20))
# with profile(activities=[ProfilerActivity.CUDA, ProfilerActivity.CPU,], record_shapes=True) as prof:
# ! additional regularizations
render_alpha = allmap[1:2]
# get normal map
# transform normal from view space to world space
# with record_function("render_normal"):
render_normal = allmap[2:5]
# render_normal = (render_normal.permute(1,2,0) @ (viewpoint_camera.world_view_transform[:3,:3].T)).permute(2,0,1)
render_normal = (render_normal.permute(1,2,0) @ (view_matrix[:3,:3].T)).permute(2,0,1)
# with record_function("render_depth"):
# get median depth map
render_depth_median = allmap[5:6]
render_depth_median = torch.nan_to_num(render_depth_median, 0, 0)
# get expected depth map
render_depth_expected = allmap[0:1]
render_depth_expected = (render_depth_expected / render_alpha)
render_depth_expected = torch.nan_to_num(render_depth_expected, 0, 0)
# get depth distortion map
render_dist = allmap[6:7]
# psedo surface attributes
# surf depth is either median or expected by setting depth_ratio to 1 or 0
# for bounded scene, use median depth, i.e., depth_ratio = 1;
# for unbounded scene, use expected depth, i.e., depth_ration = 0, to reduce disk anliasing.
# ! hard coded depth_ratio = 1 for objaverse
surf_depth = render_depth_median
# with record_function("surf_normal"):
# depth_ratio = 1
# # surf_depth = render_depth_expected * (1-depth_ratio) + (depth_ratio) * render_depth_median
# # assume the depth points form the 'surface' and generate psudo surface normal for regularizations.
# # surf_normal = depth_to_normal(viewpoint_camera, surf_depth)
# surf_normal = depth_to_normal_2(world_view_transform=view_matrix, tanfov=tanfov, W=self.output_size, H=self.output_size, depth=surf_depth)
# surf_normal = surf_normal.permute(2,0,1)
# # remember to multiply with accum_alpha since render_normal is unnormalized.
# surf_normal = surf_normal * (render_alpha).detach()
# ! images
rendered_image = rendered_image.clamp(0, 1)
# images.append(rendered_image)
# alphas.append(rendered_alpha)
# depths.append(rendered_depth)
images.append(rendered_image)
alphas.append(render_alpha)
depths.append(surf_depth)
# surf_normals.append(surf_normal)
rend_normals.append(render_normal)
dists.append(render_dist)
# print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=20))
# st()
pass
images = torch.stack(images, dim=0).view(B, V, 3, output_size, output_size)
alphas = torch.stack(alphas, dim=0).view(B, V, 1, output_size, output_size)
depths = torch.stack(depths, dim=0).view(B, V, 1, output_size, output_size)
# approximated surface normal? No, direct depth supervision here.
# surf_normals = torch.stack(surf_normals, dim=0).view(B, V, 3, self.output_size, self.output_size)
# disk normal
rend_normals = torch.stack(rend_normals, dim=0).view(B, V, 3, output_size, output_size)
dists = torch.stack(dists, dim=0).view(B, V, 1, output_size, output_size)
# images = torch.stack(images, dim=0).view(B*V, 3, self.output_size, self.output_size)
# alphas = torch.stack(alphas, dim=0).view(B*V, 1, self.output_size, self.output_size)
# depths = torch.stack(depths, dim=0).view(B*V, 1, self.output_size, self.output_size)
return {
"image": images, # [B, V, 3, H, W]
"alpha": alphas, # [B, V, 1, H, W]
"depth": depths,
# "surf_normal": surf_normals,
"rend_normal": rend_normals,
"dist": dists
}
# TODO, save/load 2dgs Gaussians
def save_2dgs_ply(self, path, gaussians, compatible=True):
# gaussians: [B, N, 13]
mkdir_p(os.path.dirname(path))
assert gaussians.shape[0] == 1, 'only support batch size 1'
from plyfile import PlyData, PlyElement
means3D = gaussians[0, :, 0:3].contiguous().float()
opacity = gaussians[0, :, 3:4].contiguous().float()
scales = gaussians[0, :, 4:6].contiguous().float()
rotations = gaussians[0, :, 6:10].contiguous().float()
shs = gaussians[0, :, 10:].unsqueeze(1).contiguous().float() # [N, 1, 3]
# invert activation to make it compatible with the original ply format
if compatible:
opacity = kiui.op.inverse_sigmoid(opacity)
scales = torch.log(scales + 1e-8)
shs = (shs - 0.5) / 0.28209479177387814
xyzs = means3D.detach().cpu().numpy()
f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opacity.detach().cpu().numpy()
scales = scales.detach().cpu().numpy()
rotations = rotations.detach().cpu().numpy()
# xyz = self._xyz.detach().cpu().numpy()
# normals = np.zeros_like(xyz)
# f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
# f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
# opacities = self._opacity.detach().cpu().numpy()
# scale = self._scaling.detach().cpu().numpy()
# rotation = self._rotation.detach().cpu().numpy()
# dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
l = ['x', 'y', 'z']
# All channels except the 3 DC
for i in range(f_dc.shape[1]):
l.append('f_dc_{}'.format(i))
# save normals also
for i in range(f_dc.shape[1]):
l.append('f_dc_{}'.format(i))
l.append('opacity')
for i in range(scales.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotations.shape[1]):
l.append('rot_{}'.format(i))
dtype_full = [(attribute, 'f4') for attribute in l]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
# attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
# attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
attributes = np.concatenate((xyz, normals, f_dc, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
# def save_ply(self, gaussians, path, compatible=True):
# # gaussians: [B, N, 14]
# # compatible: save pre-activated gaussians as in the original paper
# assert gaussians.shape[0] == 1, 'only support batch size 1'
# from plyfile import PlyData, PlyElement
# means3D = gaussians[0, :, 0:3].contiguous().float()
# opacity = gaussians[0, :, 3:4].contiguous().float()
# scales = gaussians[0, :, 4:7].contiguous().float()
# rotations = gaussians[0, :, 7:11].contiguous().float()
# shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]
# # prune by opacity
# mask = opacity.squeeze(-1) >= 0.005
# means3D = means3D[mask]
# opacity = opacity[mask]
# scales = scales[mask]
# rotations = rotations[mask]
# shs = shs[mask]
# # invert activation to make it compatible with the original ply format
# if compatible:
# opacity = kiui.op.inverse_sigmoid(opacity)
# scales = torch.log(scales + 1e-8)
# shs = (shs - 0.5) / 0.28209479177387814
# xyzs = means3D.detach().cpu().numpy()
# f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
# opacities = opacity.detach().cpu().numpy()
# scales = scales.detach().cpu().numpy()
# rotations = rotations.detach().cpu().numpy()
# l = ['x', 'y', 'z']
# # All channels except the 3 DC
# for i in range(f_dc.shape[1]):
# l.append('f_dc_{}'.format(i))
# l.append('opacity')
# for i in range(scales.shape[1]):
# l.append('scale_{}'.format(i))
# for i in range(rotations.shape[1]):
# l.append('rot_{}'.format(i))
# dtype_full = [(attribute, 'f4') for attribute in l]
# elements = np.empty(xyzs.shape[0], dtype=dtype_full)
# attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
# elements[:] = list(map(tuple, attributes))
# el = PlyElement.describe(elements, 'vertex')
# PlyData([el]).write(path)
def load_2dgs_ply(self, path, compatible=True):
from plyfile import PlyData, PlyElement
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
print("Number of points at loading : ", xyz.shape[0])
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
shs = np.zeros((xyz.shape[0], 3))
shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
normal_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
gaussians = torch.from_numpy(gaussians).float() # cpu
if compatible:
gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5
return gaussians |