Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,880 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
"""
Modified from:
https://github.com/NVlabs/LSGM/blob/main/training_obj_joint.py
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# import utils as lsgm_utils
class TrainLoop3DDiffusionLSGM_noD(TrainLoop3DDiffusion):
def __init__(self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
**kwargs):
super().__init__(
rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
# freeze_ae=freeze_ae,
freeze_ae=not sde_diffusion.args.train_vae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
**kwargs)
assert sde_diffusion is not None
sde_diffusion.args.batch_size = batch_size
self.sde_diffusion = sde_diffusion
self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent
self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations
self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512))
self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256))
self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128))
self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64))
self.ddp_ddpm_model = self.ddp_model
# if sde_diffusion.args.joint_train:
# assert sde_diffusion.args.train_vae
def run_step(self, batch, step='diffusion_step_rec'):
# if step == 'diffusion_step_rec':
self.forward_diffusion(batch, behaviour='diffusion_step_rec')
# if took_step_ddpm:
self._update_ema()
self._anneal_lr()
self.log_step()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
batch = next(self.data)
self.run_step(batch, step='diffusion_step_rec')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
self.eval_ddpm_sample()
if self.sde_diffusion.args.train_vae:
self.eval_loop()
th.cuda.empty_cache()
dist_util.synchronize()
if self.step % self.save_interval == 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
if self.sde_diffusion.args.train_vae:
self.save(self.mp_trainer_rec,
self.mp_trainer_rec.model_name)
# dist_util.synchronize()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
if self.sde_diffusion.args.train_vae:
self.save(self.mp_trainer_rec,
self.mp_trainer_rec.model_name)
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
# self.save(self.mp_trainer_canonical_cvD, 'cvD')
# ! duplicated code, needs refactor later
def ddpm_step(self, eps, t, logsnr, model_kwargs={}):
"""helper function for ddpm predictions; returns predicted eps, x0 and logsnr
"""
args = self.sde_diffusion.args
pred_params = self.ddp_ddpm_model(eps, t, **model_kwargs)
# pred_params = self.ddp_model(eps, t, **model_kwargs)
if args.pred_type == 'eps':
pred_eps = pred_params
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps, pred_params, logsnr) # for VAE loss, denosied latent
elif args.pred_type == 'x0':
# ! transform to pred_eps format for mixing_component
pred_x0 = pred_params
pred_eps = self.sde_diffusion._predict_eps_from_x0(
eps, pred_params, logsnr)
else:
raise NotImplementedError(f'{args.pred_type} not implemented.')
return pred_eps, pred_x0, logsnr
# def apply_model(self, p_sample_batch, model_kwargs={}):
# # args = self.sde_diffusion.args
# noise, eps_t_p, t_p, logsnr_p, obj_weight_t_p, var_t_p = (
# p_sample_batch[k] for k in ('noise', 'eps_t_p', 't_p', 'logsnr_p',
# 'obj_weight_t_p', 'var_t_p'))
# pred_eps_p, pred_x0_p, logsnr_p = self.ddpm_step(
# eps_t_p, t_p, logsnr_p, model_kwargs)
# # ! batchify for mixing_component
# # mixing normal trick
# mixing_component = self.sde_diffusion.mixing_component(
# eps_t_p, var_t_p, t_p, enabled=True) # TODO, which should I use?
# pred_eps_p = get_mixed_prediction(
# True, pred_eps_p,
# self.ddp_ddpm_model(x=None,
# timesteps=None,
# get_attr='mixing_logit'), mixing_component)
# # ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
# with self.ddp_ddpm_model.no_sync(): # type: ignore
# l2_term_p = th.square(pred_eps_p - noise) # ? weights
# p_eps_objective = th.mean(obj_weight_t_p * l2_term_p)
# log_rec3d_loss_dict(
# dict(mixing_logit=self.ddp_ddpm_model(
# x=None, timesteps=None, get_attr='mixing_logit').detach(), ))
# return {
# 'pred_eps_p': pred_eps_p,
# 'eps_t_p': eps_t_p,
# 'p_eps_objective': p_eps_objective,
# 'pred_x0_p': pred_x0_p,
# 'logsnr_p': logsnr_p
# }
def forward_diffusion(self, batch, behaviour='rec', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
args = self.sde_diffusion.args
# self.ddp_ddpm_model.requires_grad_(True)
requires_grad(self.ddp_rec_model.module, args.train_vae)
# self.ddp_rec_model.requires_grad_(args.train_vae)
if args.train_vae:
for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore
): # type: ignore
param.requires_grad_(
False
) # ! disable triplane_decoder grad in each iteration indepenently;
self.mp_trainer_rec.zero_grad()
self.mp_trainer.zero_grad()
batch_size = batch['img'].shape[0]
# # update ddpm params
# took_step_ddpm = self.mp_trainer_ddpm.optimize(
# self.opt_ddpm) # TODO, update two groups of parameters
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
q_vae_recon_loss = th.tensor(0.0).to(dist_util.dev())
# vision_aided_loss = th.tensor(0.0).to(dist_util.dev())
# denoise_loss = th.tensor(0.0).to(dist_util.dev())
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
# and args.train_vae):
assert behaviour == 'diffusion_step_rec'
# ! train vae with CE; ddpm fixed
requires_grad(self.ddp_model.module, False)
# if args.train_vae:
# assert args.add_rendering_loss
with th.set_grad_enabled(args.train_vae):
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
# behaviour='enc_dec_wo_triplane'
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
# TODO, no need to render if not SSD; no need to do ViT decoder if only the latent is needed. update later
# TODO, train diff and sds together, available?
all_log_q = [vae_out['log_q_2Ddiffusion']]
eps = vae_out[self.latent_name]
eps.requires_grad_(True) # single stage diffusion
# t, weights = self.schedule_sampler.sample(
# eps.shape[0], dist_util.dev())
noise = th.randn(
size=eps.size(), device=eps.device
) # note that this noise value is currently shared!
model_kwargs = {}
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_p)
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p,
m_t_p)
logsnr_p = self.sde_diffusion.log_snr(m_t_p,
var_t_p) # for p only
# in case we want to train q (vae) with another batch using a different sampling scheme for times t
if args.iw_sample_q in ['ll_uniform', 'll_iw']:
t_q, var_t_q, m_t_q, obj_weight_t_q, _, g2_t_q = \
self.sde_diffusion.iw_quantities(args.iw_sample_q)
eps_t_q = self.sde_diffusion.sample_q(
eps, noise, var_t_q, m_t_q)
eps_t_p = eps_t_p.detach().requires_grad_(
True) # ! p just not updated here
eps_t = th.cat([eps_t_p, eps_t_q], dim=0)
var_t = th.cat([var_t_p, var_t_q], dim=0)
t = th.cat([t_p, t_q], dim=0)
noise = th.cat([noise, noise], dim=0)
# logsnr = self.sde_diffusion.log_snr(m_t_q, var_t_p)
else:
eps_t, m_t, var_t, t, g2_t = eps_t_p, m_t_p, var_t_p, t_p, g2_t_p
# run the diffusion model
eps_t.requires_grad_(True) # 2*BS, 12, 16, 16
pred_params = self.ddp_model(eps_t, t, **model_kwargs)
if args.pred_type == 'eps':
pred_eps = pred_params
elif args.pred_type == 'x0':
# ! transform to pred_eps format for mixing_component
pred_eps = self.sde_diffusion._predict_eps_from_x0(
eps_t, pred_params, logsnr_p)
else:
raise NotImplementedError(
f'{args.pred_type} not implemented.')
# mixing normal trick
mixing_component = self.sde_diffusion.mixing_component(
eps_t, var_t, t, enabled=True) # TODO, which should I use?
pred_eps = get_mixed_prediction(
# True, pred_params,
True,
pred_eps,
self.ddp_model(x=None,
timesteps=None,
get_attr='mixing_logit'),
mixing_component)
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
if last_batch or not self.use_ddp:
l2_term = th.square(pred_eps - noise)
else:
with self.ddp_model.no_sync(): # type: ignore
l2_term = th.square(pred_eps - noise) # ? weights
# nelbo loss with kl balancing
# ! remainign parts of cross entropy in likelihook training
# unpack separate objectives, in case we want to train q (vae) using a different sampling scheme for times t
if args.iw_sample_q in ['ll_uniform',
'll_iw']: # ll_iw by default
l2_term_p, l2_term_q = th.chunk(l2_term, chunks=2, dim=0)
p_objective = th.mean(obj_weight_t_p * l2_term_p,
dim=[1, 2, 3])
cross_entropy_per_var = obj_weight_t_q * l2_term_q
else:
p_objective = th.mean(obj_weight_t_p * l2_term,
dim=[1, 2, 3])
cross_entropy_per_var = obj_weight_t_q * l2_term
cross_entropy_per_var += self.sde_diffusion.cross_entropy_const(
args.sde_time_eps)
all_neg_log_p = [cross_entropy_per_var
] # since only one vae group
kl_all_list, kl_vals_per_group, kl_diag_list = kl_per_group_vada(
all_log_q, all_neg_log_p) # return the mean of two terms
# nelbo loss with kl balancing
balanced_kl, kl_coeffs, kl_vals = kl_balancer(kl_all_list,
kl_coeff=1.0,
kl_balance=False,
alpha_i=None)
# ! update vae for CE
# ! single stage diffusion for rec side 1: bind vae prior and diffusion prior
if args.train_vae:
# if args.add_rendering_loss:
# if args.joint_train:
with th.set_grad_enabled(args.train_vae):
target = micro
pred = self.ddp_rec_model(
latent=vae_out,
# latent={
# **vae_out, self.latent_name: pred_x0,
# 'latent_name': self.latent_name
# },
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
if last_batch or not self.use_ddp:
q_vae_recon_loss, loss_dict = self.loss_class(
pred, target, test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
q_vae_recon_loss, loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(loss_dict)
# ! calculate p/q loss;
nelbo_loss = balanced_kl + q_vae_recon_loss
q_loss = th.mean(nelbo_loss)
p_loss = th.mean(p_objective)
log_rec3d_loss_dict(
dict(
q_vae_recon_loss=q_vae_recon_loss,
p_loss=p_loss,
balanced_kl=balanced_kl,
mixing_logit=self.ddp_model(
x=None, timesteps=None,
get_attr='mixing_logit').detach(),
))
# ! single stage diffusion for rec side 2: generative feature
if args.p_rendering_loss:
with th.set_grad_enabled(args.train_vae):
# ! transform fro pred_eps format back to pred_x0, for p only.
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, pred_eps[:eps_t_p.shape[0]],
logsnr_p) # for VAE loss, denosied latent
target = micro
pred = self.ddp_rec_model(
# latent=vae_out,
latent={
**vae_out, self.latent_name: pred_x0,
'latent_name': self.latent_name
},
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
if last_batch or not self.use_ddp:
p_vae_recon_loss, loss_dict = self.loss_class(
pred, target, test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
p_vae_recon_loss, loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(
dict(p_vae_recon_loss=p_vae_recon_loss, ))
# ! backpropagate q_loss for vae and update vae params, if trained
if args.train_vae:
self.mp_trainer_rec.backward(
q_loss,
retain_graph=different_p_q_objectives(
args.iw_sample_p, args.iw_sample_q))
# if we use different p and q objectives or are not training the vae, discard gradients and backpropagate p_loss
if different_p_q_objectives(
args.iw_sample_p, args.iw_sample_q) or not args.train_vae:
if args.train_vae:
# discard current gradients computed by weighted loss for VAE
self.mp_trainer_rec.zero_grad()
self.mp_trainer.backward(p_loss)
# TODO, merge visualization with original AE
# =================================== denoised AE log part ===================================
if dist_util.get_rank(
) == 0 and self.step % 500 == 0 and behaviour != 'diff':
with th.no_grad():
if not args.train_vae:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k: v[0:1].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(
latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
assert pred is not None
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (
# pred_depth.max() - pred_depth.min())
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
else:
gt_img = self.pool_64(gt_img)
gt_depth = self.pool_64(gt_depth)
gt_vis = th.cat(
[
gt_img, micro['img'], micro['img'],
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=eps_t_p[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
# ! test time, use discrete diffusion model
params_p, _ = th.chunk(pred_eps, chunks=2,
dim=0) # get predicted noise
# TODO, implement for SDE difusion?
# ! two values isclose(rtol=1e-03, atol=1e-04)
# pred_xstart = self.diffusion._predict_xstart_from_eps(
# x_t=eps_t_p,
# t=th.tensor(t_p.detach() *
# self.diffusion.num_timesteps).long(),
# eps=params_p)
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, params_p,
logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=pred_x0[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat([
pred_img[0:1], noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1],
pred_depth[0:1].repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg'
)
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg'
)
del vis, pred_vis, pred_x0, pred_eps, micro, vae_out
th.cuda.empty_cache()
# ! copied from train_util.py
# TODO, needs to lint the class inheritance chain later.
@th.inference_mode()
def eval_novelview_loop(self):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
novel_view_micro = {}
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i == 0:
novel_view_micro = {
k: v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in batch.items()
}
else:
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
novel_view_micro = {
k: v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in novel_view_micro.items()
}
pred = self.rec_model(img=novel_view_micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# target = {
# 'img': micro['img'],
# 'depth': micro['depth'],
# 'depth_mask': micro['depth_mask']
# }
# targe
_, loss_dict = self.loss_class(pred, micro, test_mode=True)
all_loss_dict.append(loss_dict)
# ! move to other places, add tensorboard
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
self.pool_64(micro['img']), pred['image_raw'],
pred_depth.repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores_novelview.json'),
'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/NovelView/{k}', v,
self.step + self.resume_step)
del video_out, vis, pred_vis, pred, micro
th.cuda.empty_cache()
# @th.no_grad()
# def eval_loop(self, c_list:list):
@th.inference_mode()
def eval_loop(self):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
self.rec_model.eval()
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
pred = self.rec_model(img=micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# target = {
# 'img': micro['img'],
# 'depth': micro['depth'],
# 'depth_mask': micro['depth_mask']
# }
# if last_batch or not self.use_ddp:
# loss, loss_dict = self.loss_class(pred, target)
# else:
# with self.ddp_model.no_sync(): # type: ignore
_, loss_dict = self.loss_class(pred, micro, test_mode=True)
all_loss_dict.append(loss_dict)
# ! move to other places, add tensorboard
# gt_vis = th.cat([micro['img'], micro['img']], dim=-1) # TODO, fail to load depth. range [0, 1]
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(1,2,0).cpu().numpy() # ! pred in range[-1, 1]
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
self.pool_64(micro['img']), pred['image_raw'],
pred_depth.repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/Rec/{k}', v,
self.step + self.resume_step)
del video_out, vis, pred_vis, pred, micro
th.cuda.empty_cache()
self.eval_novelview_loop()
self.rec_model.train()
# for compatablity with p_sample, to lint
def apply_model_inference(self, x_noisy, t, c=None, model_kwargs={}):
# control = self.ddp_control_model(x=x_noisy,
# hint=th.cat(c['c_concat'], 1),
# timesteps=t,
# context=None)
# control = [c * scale for c, scale in zip(control, self.control_scales)]
pred_params = self.ddp_ddpm_model(x_noisy, t,
**model_kwargs
)
assert args.pred_type == 'eps'
# mixing normal trick
mixing_component = self.sde_diffusion.mixing_component(
eps, var_t, t, enabled=True) # TODO, which should I use?
pred_eps = get_mixed_prediction(
True, pred_eps,
self.ddp_ddpm_model(x=None, timesteps=None, get_attr='mixing_logit'), mixing_component)
return pred_params
@th.inference_mode()
def eval_ddpm_sample(self):
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.ddp_rec_model.module.decoder.
triplane_decoder.out_chans, # type: ignore
clip_denoised=False,
class_cond=False,
use_ddim=False))
model_kwargs = {}
if args.class_cond:
classes = th.randint(low=0,
high=NUM_CLASSES,
size=(args.batch_size, ),
device=dist_util.dev())
model_kwargs["y"] = classes
diffusion = self.diffusion
sample_fn = (diffusion.p_sample_loop
if not args.use_ddim else diffusion.ddim_sample_loop)
for i in range(1):
triplane_sample = sample_fn(
# self.ddp_model,
self,
(
args.batch_size,
self.ddp_rec_model.module.decoder.ldm_z_channels *
3, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
mixing_normal=True, # !
)
th.cuda.empty_cache()
self.render_video_given_triplane(
triplane_sample,
name_prefix=f'{self.step + self.resume_step}_{i}')
# st()
del triplane_sample
th.cuda.empty_cache()
|