Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,335 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
from calendar import c
import imageio
import torchvision
import random
# import einops
import kornia
import einops
import numpy as np
import torch
import torch.nn as nn
from .layers import RayEncoder, Transformer, PreNorm
from pdb import set_trace as st
from pathlib import Path
import math
from ldm.modules.attention import MemoryEfficientCrossAttention
from timm.models.vision_transformer import PatchEmbed
from ldm.modules.diffusionmodules.model import Encoder
from guided_diffusion import dist_util, logger
import point_cloud_utils as pcu
import pytorch3d.ops
from pytorch3d.ops.utils import masked_gather
from pytorch3d.implicitron.dataset.data_loader_map_provider import FrameData
from pytorch3d.renderer import PointsRasterizationSettings, PointsRasterizer
from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras
from pytorch3d.structures import Pointclouds
from timm.models.vision_transformer import PatchEmbed, Mlp
from vit.vit_triplane import XYZPosEmbed
from utils.geometry import index, perspective
def approx_gelu():
return nn.GELU(approximate="tanh")
class SRTConvBlock(nn.Module):
def __init__(self, idim, hdim=None, odim=None):
super().__init__()
if hdim is None:
hdim = idim
if odim is None:
odim = 2 * hdim
conv_kwargs = {'bias': False, 'kernel_size': 3, 'padding': 1}
self.layers = nn.Sequential(
nn.Conv2d(idim, hdim, stride=1, **conv_kwargs), nn.ReLU(),
nn.Conv2d(hdim, odim, stride=2, **conv_kwargs), nn.ReLU())
def forward(self, x):
return self.layers(x)
class SRTEncoder(nn.Module):
""" Scene Representation Transformer Encoder, as presented in the SRT paper at CVPR 2022 (caveats below)"""
def __init__(self,
num_conv_blocks=4,
num_att_blocks=10,
pos_start_octave=0,
scale_embeddings=False):
super().__init__()
self.ray_encoder = RayEncoder(pos_octaves=15,
pos_start_octave=pos_start_octave,
ray_octaves=15)
conv_blocks = [SRTConvBlock(idim=183, hdim=96)]
cur_hdim = 192
for i in range(1, num_conv_blocks):
conv_blocks.append(SRTConvBlock(idim=cur_hdim, odim=None))
cur_hdim *= 2
self.conv_blocks = nn.Sequential(*conv_blocks)
self.per_patch_linear = nn.Conv2d(cur_hdim, 768, kernel_size=1)
# Original SRT initializes with stddev=1/math.sqrt(d).
# But model initialization likely also differs between torch & jax, and this worked, so, eh.
embedding_stdev = (1. / math.sqrt(768)) if scale_embeddings else 1.
self.pixel_embedding = nn.Parameter(
torch.randn(1, 768, 15, 20) * embedding_stdev)
self.canonical_camera_embedding = nn.Parameter(
torch.randn(1, 1, 768) * embedding_stdev)
self.non_canonical_camera_embedding = nn.Parameter(
torch.randn(1, 1, 768) * embedding_stdev)
# SRT as in the CVPR paper does not use actual self attention, but a special type:
# the current features in the Nth layer don't self-attend, but they
# always attend into the initial patch embedding (i.e., the output of
# the CNN). SRT further used post-normalization rather than
# pre-normalization. Since then though, in OSRT, pre-norm and regular
# self-attention was found to perform better overall. So that's what
# we do here, though it may be less stable under some circumstances.
self.transformer = Transformer(768,
depth=num_att_blocks,
heads=12,
dim_head=64,
mlp_dim=1536,
selfatt=True)
def forward(self, images, camera_pos, rays):
"""
Args:
images: [batch_size, num_images, 3, height, width].
Assume the first image is canonical - shuffling happens in the data loader.
camera_pos: [batch_size, num_images, 3]
rays: [batch_size, num_images, height, width, 3]
Returns:
scene representation: [batch_size, num_patches, channels_per_patch]
"""
batch_size, num_images = images.shape[:2]
x = images.flatten(0, 1)
camera_pos = camera_pos.flatten(0, 1)
rays = rays.flatten(0, 1)
canonical_idxs = torch.zeros(batch_size, num_images)
canonical_idxs[:, 0] = 1
canonical_idxs = canonical_idxs.flatten(
0, 1).unsqueeze(-1).unsqueeze(-1).to(x)
camera_id_embedding = canonical_idxs * self.canonical_camera_embedding + \
(1. - canonical_idxs) * self.non_canonical_camera_embedding
ray_enc = self.ray_encoder(camera_pos, rays)
x = torch.cat((x, ray_enc), 1)
x = self.conv_blocks(x)
x = self.per_patch_linear(x)
height, width = x.shape[2:]
x = x + self.pixel_embedding[:, :, :height, :width]
x = x.flatten(2, 3).permute(0, 2, 1)
x = x + camera_id_embedding
patches_per_image, channels_per_patch = x.shape[1:]
x = x.reshape(batch_size, num_images * patches_per_image,
channels_per_patch)
x = self.transformer(x)
return x
class ImprovedSRTEncoder(nn.Module):
"""
Scene Representation Transformer Encoder with the improvements from Appendix A.4 in the OSRT paper.
"""
def __init__(self,
num_conv_blocks=3,
num_att_blocks=5,
pos_start_octave=0):
super().__init__()
self.ray_encoder = RayEncoder(pos_octaves=15,
pos_start_octave=pos_start_octave,
ray_octaves=15)
conv_blocks = [SRTConvBlock(idim=183, hdim=96)]
cur_hdim = 192
for i in range(1, num_conv_blocks):
conv_blocks.append(SRTConvBlock(idim=cur_hdim, odim=None))
cur_hdim *= 2
self.conv_blocks = nn.Sequential(*conv_blocks)
self.per_patch_linear = nn.Conv2d(cur_hdim, 768, kernel_size=1)
self.transformer = Transformer(768,
depth=num_att_blocks,
heads=12,
dim_head=64,
mlp_dim=1536,
selfatt=True)
def forward(self, images, camera_pos, rays):
"""
Args:
images: [batch_size, num_images, 3, height, width]. Assume the first image is canonical.
camera_pos: [batch_size, num_images, 3]
rays: [batch_size, num_images, height, width, 3]
Returns:
scene representation: [batch_size, num_patches, channels_per_patch]
"""
batch_size, num_images = images.shape[:2]
x = images.flatten(0, 1)
camera_pos = camera_pos.flatten(0, 1)
rays = rays.flatten(0, 1)
ray_enc = self.ray_encoder(camera_pos, rays)
x = torch.cat((x, ray_enc), 1)
x = self.conv_blocks(x)
x = self.per_patch_linear(x)
x = x.flatten(2, 3).permute(0, 2, 1)
patches_per_image, channels_per_patch = x.shape[1:]
x = x.reshape(batch_size, num_images * patches_per_image,
channels_per_patch)
x = self.transformer(x)
return x
class ImprovedSRTEncoderVAE(nn.Module):
"""
Modified from ImprovedSRTEncoder
1. replace conv_blocks to timm embedder
2. replace ray_PE with Plucker coordinate
3. add xformers/flash for transformer attention
"""
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
num_frames=4,
num_att_blocks=5,
tx_dim=768,
num_heads=12,
mlp_ratio=2, # denoted by srt
patch_size=16,
decomposed=False,
**kwargs):
super().__init__()
# self.ray_encoder = RayEncoder(pos_octaves=15, pos_start_octave=pos_start_octave,
# ray_octaves=15)
# conv_blocks = [SRTConvBlock(idim=183, hdim=96)]
# cur_hdim = 192
# for i in range(1, num_conv_blocks):
# conv_blocks.append(SRTConvBlock(idim=cur_hdim, odim=None))
# cur_hdim *= 2
self.num_frames = num_frames
self.embed_dim = tx_dim
self.embedder = PatchEmbed(
img_size=256,
patch_size=patch_size,
# patch_size=8, # compare the performance
in_chans=in_channels,
embed_dim=self.embed_dim,
norm_layer=None,
flatten=True,
bias=True,
) # downsample f=16 here.
# same configuration as vit-B
if not decomposed:
self.transformer = Transformer(
self.embed_dim, # 12 * 64 = 768
depth=num_att_blocks,
heads=num_heads,
mlp_dim=mlp_ratio * self.embed_dim, # 1536 by default
)
else:
self.transformer_selfattn = Transformer(
self.embed_dim, # 12 * 64 = 768
depth=1,
heads=num_heads,
mlp_dim=mlp_ratio * self.embed_dim, # 1536 by default
)
self.transformer = Transformer(
self.embed_dim, # 12 * 64 = 768
# depth=num_att_blocks-1,
depth=num_att_blocks,
heads=num_heads,
mlp_dim=mlp_ratio * self.embed_dim, # 1536 by default
)
# to a compact latent, with CA
# query_dim = 4*(1+double_z)
query_dim = 12 * (1 + double_z
) # for high-quality 3D encoding, follow direct3D
self.latent_embedding = nn.Parameter(
torch.randn(1, 32 * 32 * 3, query_dim))
self.readout_ca = MemoryEfficientCrossAttention(
query_dim,
self.embed_dim,
)
def forward_tx(self, x):
x = self.transformer(x) # B VL C
# ? 3DPE
x = self.readout_ca(self.latent_embedding.repeat(x.shape[0], 1, 1), x)
# ! reshape to 3D latent here. how to make the latent 3D-aware? Later. Performance first.
x = einops.rearrange(x, 'B (N H W) C -> B C (N H) W', H=32, W=32, N=3)
return x
def forward(self, x, **kwargs):
"""
Args:
images: [batch_size, num_images, 3, height, width]. Assume the first image is canonical.
camera_pos: [batch_size, num_images, 3]
rays: [batch_size, num_images, height, width, 3]
Returns:
scene representation: [batch_size, num_patches, channels_per_patch]
"""
x = self.embedder(x) # B L C
x = einops.rearrange(x, '(B V) L C -> B (V L) C', V=self.num_frames)
x = self.forward_tx(x)
return x
# ! ablation the srt design
class ImprovedSRTEncoderVAE_K8(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(patch_size=8, **kwargs)
class ImprovedSRTEncoderVAE_L6(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(num_att_blocks=6, **kwargs)
class ImprovedSRTEncoderVAE_L5_vitl(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(num_att_blocks=5, tx_dim=1024, num_heads=16, **kwargs)
class ImprovedSRTEncoderVAE_mlp_ratio4(ImprovedSRTEncoderVAE
): # ! by default now
def __init__(self, **kwargs):
super().__init__(mlp_ratio=4, **kwargs)
class ImprovedSRTEncoderVAE_mlp_ratio4_decomposed(
ImprovedSRTEncoderVAE_mlp_ratio4):
def __init__(self, **kwargs):
super().__init__(decomposed=True, **kwargs) # just decompose tx
def forward(self, x, **kwargs):
"""
Args:
images: [batch_size, num_images, 3, height, width]. Assume the first image is canonical.
camera_pos: [batch_size, num_images, 3]
rays: [batch_size, num_images, height, width, 3]
Returns:
scene representation: [batch_size, num_patches, channels_per_patch]
"""
x = self.embedder(x) # B L C
# x = einops.rearrange(x, '(B V) L C -> B (V L) C', V=self.num_frames)
x = self.transformer_selfattn(x)
x = einops.rearrange(x, '(B V) L C -> B (V L) C', V=self.num_frames)
x = self.forward_tx(x)
return x
class ImprovedSRTEncoderVAE_mlp_ratio4_f8(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(mlp_ratio=4, patch_size=8, **kwargs)
class ImprovedSRTEncoderVAE_mlp_ratio4_f8_L6(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(mlp_ratio=4, patch_size=8, num_att_blocks=6, **kwargs)
class ImprovedSRTEncoderVAE_mlp_ratio4_L6(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(mlp_ratio=4, num_att_blocks=6, **kwargs)
# ! an SD VAE with one SRT attention + one CA attention for KL
class HybridEncoder(Encoder):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# st()
self.srt = ImprovedSRTEncoderVAE(
**kwargs,
# num_frames=4,
num_att_blocks=1, # only one layer required
tx_dim=self.conv_out.weight.shape[1],
num_heads=8, # 256 / 64
mlp_ratio=4, # denoted by srt
# patch_size=16,
)
del self.srt.embedder # use original
self.conv_out = nn.Identity()
def forward(self, x, **kwargs):
x = super().forward(x)
x = einops.rearrange(x,
'(B V) C H W -> B (V H W) C',
V=self.srt.num_frames)
x = self.srt.forward_tx(x)
return x
class ImprovedSRTEncoderVAE_mlp_ratio4_heavyPatchify(ImprovedSRTEncoderVAE):
def __init__(self, **kwargs):
super().__init__(mlp_ratio=4, **kwargs)
del self.embedder
conv_blocks = [SRTConvBlock(idim=10, hdim=48)] # match the ViT-B dim
cur_hdim = 48 * 2
for i in range(1,
4): # f=16 still. could reduce attention layers by one?
conv_blocks.append(SRTConvBlock(idim=cur_hdim, odim=None))
cur_hdim *= 2
self.embedder = nn.Sequential(*conv_blocks)
def forward(self, x, **kwargs):
"""
Args:
images: [batch_size, num_images, 3, height, width]. Assume the first image is canonical.
camera_pos: [batch_size, num_images, 3]
rays: [batch_size, num_images, height, width, 3]
Returns:
scene representation: [batch_size, num_patches, channels_per_patch]
"""
x = self.embedder(x) # B C H W
x = einops.rearrange(x,
'(B V) C H W -> B (V H W) C',
V=self.num_frames)
x = self.transformer(x) # B VL C
# ? 3DPE
x = self.readout_ca(self.latent_embedding.repeat(x.shape[0], 1, 1), x)
# ! reshape to 3D latent here. how to make the latent 3D-aware? Later. Performance first.
x = einops.rearrange(x, 'B (N H W) C -> B C (N H) W', H=32, W=32, N=3)
return x
class HybridEncoderPCDStructuredLatent(Encoder):
def __init__(self, num_frames, latent_num=768, **kwargs):
super().__init__(**kwargs)
# st()
self.num_frames = num_frames
tx_dim = self.conv_out.weight.shape[1] # after encoder mid_layers
self.srt = ImprovedSRTEncoderVAE(
**kwargs,
# num_frames=4,
num_att_blocks=3, # only one layer required
tx_dim=tx_dim,
num_heads=8, # 256 / 64
mlp_ratio=4, # denoted by srt
)
del self.srt.embedder, self.srt.readout_ca, self.srt.latent_embedding # use original
# self.box_pool2d = kornia.filters.BlurPool2D(kernel_size=(8,8), stride=8)
self.box_pool2d = kornia.filters.BlurPool2D(kernel_size=(8, 8),
stride=8)
# self.pool2d = kornia.filters.MedianBlur(kernel_size=(8,8), stride=8)
self.agg_ca = MemoryEfficientCrossAttention(
tx_dim,
tx_dim,
qk_norm=True, # as in vit-22B
)
self.spatial_token_reshape = lambda x: einops.rearrange(
x, '(B V) C H W -> B (V H W) C', V=self.num_frames)
self.latent_num = latent_num # 768 * 3 by default
self.xyz_pos_embed = XYZPosEmbed(tx_dim)
# ! VAE part
self.conv_out = nn.Identity()
self.Mlp_out = PreNorm(
tx_dim, # ! add PreNorm before VAE reduction, stablize training.
Mlp(
in_features=tx_dim, # reduce dim
hidden_features=tx_dim,
out_features=self.z_channels * 2, # double_z
act_layer=approx_gelu,
drop=0))
self.ca_no_pcd = False
self.pixel_aligned_query = False
self.pc2 = True
if self.pc2:
# https://github.com/lukemelas/projection-conditioned-point-cloud-diffusion/blob/64fd55a0d00b52735cf02e11c5112374c7104ece/experiments/model/projection_model.py#L87
# Save rasterization settings
raster_point_radius: float = 0.0075 # point size
image_size = 512 # ? hard coded
raster_points_per_pixel: int = 1
bin_size: int = 0
self.raster_settings = PointsRasterizationSettings(
image_size=(image_size, image_size),
radius=raster_point_radius,
points_per_pixel=raster_points_per_pixel,
bin_size=bin_size,
)
self.scale_factor = 1
# def _process_token_xyz(self, token_xyz, h):
# # pad zero xyz points to reasonable value.
# nonzero_mask = (token_xyz != 0).all(dim=2) # Shape: (B, N)
# non_zero_token_xyz = token_xyz[nonzero_mask]
# non_zero_token_h = h[nonzero_mask]
# # for loop to get foreground points of each instance
# # TODO, accelerate with vmap
# # No, directly use sparse pcd as input as surface points? fps sampling 768 from 4096 points.
# # All points here should not have 0 xyz.
# # fg_token_xyz = []
# # for idx in range(token_xyz.shape[1]):
# fps_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# non_zero_token_xyz, K=self.latent_num) # B self.latent_num
# # pcu.save_mesh_v(f'xyz.ply', xyz[0].float().detach().permute(1,2,0).reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# # pcu.save_mesh_v(f'fps_xyz.ply', fps_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# pcu.save_mesh_v(f'token_xyz3.ply', token_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
# # xyz = self.spatial_token_reshape(xyz)
# # pcu.save_mesh_v(f'xyz_new.ply', xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
# st()
# query_h = masked_gather(non_zero_token_h, fps_idx) # torch.gather with dim expansion
# return query_h, fps_xyz
def _process_token_xyz(self, pcd, pcd_h):
# ! 16x uniform downsample before FPS.
# rand_start_pt = random.randint(0,16)
# query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# pcd[:, rand_start_pt::16], K=self.latent_num, random_start_point=True) # B self.latent_num
# query_pcd_h = masked_gather(pcd_h[:, rand_start_pt::16], fps_idx) # torch.gather with dim expansion
# ! fps very slow on high-res pcd
query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
pcd, K=self.latent_num,
# random_start_point=False) # B self.latent_num
random_start_point=True) # B self.latent_num
query_pcd_h = masked_gather(pcd_h,
fps_idx) # torch.gather with dim expansion
# pcu.save_mesh_v(f'xyz.ply', xyz[0].float().detach().permute(1,2,0).reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# pcu.save_mesh_v(f'fps_xyz.ply', fps_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# pcu.save_mesh_v(f'query_pcd_xyz.ply', query_pcd_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
# pcu.save_mesh_v(f'pcd_xyz.ply', pcd[0].float().detach().reshape(-1,3).cpu().numpy(),)
# xyz = self.spatial_token_reshape(xyz)
# pcu.save_mesh_v(f'xyz_new.ply', xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
return query_pcd_h, query_pcd_xyz
def forward(self, x, pcd, **kwargs):
# def forward(self, x, num_frames=None):
assert x.shape[1] == 15 # rgb(3),normal(3),plucker_ray(6),xyz(3)
xyz = x[:, -3:, ...] # for fps downsampling
# 0. retrieve VAE tokens
h = super().forward(
x, num_frames=self.num_frames
) # ! support data augmentation, different FPS different latent corresponding to the same instance?
# st()
# pcu.save_mesh_v(f'{Path(logger.get_dir())}/anchor_all.ply',pcd[0].float().detach().cpu().numpy())
# ! add 3D PE.
# 1. unproj 2D tokens to 3D
token_xyz = xyz[..., 4::8, 4::8]
if self.pixel_aligned_query:
# h = self.spatial_token_reshape(h) # V frames merge to a single latent here.
# h = h + self.xyz_pos_embed(token_xyz) # directly add PE to h here.
# # ! PE over surface fps-pcd
# pcd_h = self.xyz_pos_embed(pcd) # directly add PE to h here.
# 2. fps sampling surface as pcd-structured latent.
h, query_pcd_xyz = self._process_token_xyz(
pcd, token_xyz, h, c=kwargs.get('c'),
x=x) # aggregate with pixel-aligned operation.
elif self.pc2: # rasterize the point cloud to multi-view feature maps
# https://github.com/lukemelas/projection-conditioned-point-cloud-diffusion/blob/64fd55a0d00b52735cf02e11c5112374c7104ece/experiments/model/projection_model.py#L128
# ! prepare the features before projection
token_xyz = self.spatial_token_reshape(token_xyz)
h = self.spatial_token_reshape(
h) # V frames merge to a single latent here.
# directly add PE to h here.
h = h + self.xyz_pos_embed(token_xyz) # h: B L C
# ! prepare pytorch3d camera
c = kwargs['c'] # gs_format dict
focal_length = c['orig_pose'][..., 16:17] # B V 1
img_h, img_w = x.shape[-2:]
R, T = c['R'], c['T'] # B V 3 3, B V 3
# ! bs=1 test. will merge B, V later for parallel compute.
V = focal_length.shape[1]
principal_point = torch.zeros(V, 2)
img_size = torch.Tensor([img_h, img_w]).unsqueeze(0).repeat_interleave(V, 0).to(focal_length)
camera = PerspectiveCameras(focal_length=focal_length[0],principal_point=principal_point, R=R[0], T=T[0], image_size=img_size)
# camera = PerspectiveCameras(focal_length=focal_length, R=R, T=T, image_size=(img_h, img_w))
# !Create rasterizer
rasterizer = PointsRasterizer(cameras=camera.to(pcd.device), raster_settings=self.raster_settings)
fragments = rasterizer(Pointclouds(pcd[0:1].repeat_interleave(V, 0))) # (B, H, W, R)
fragments_idx: Tensor = fragments.idx.long()
visible_pixels = (fragments_idx > -1) # (B, H, W, R)
view_idx = 0 # Index of the viewpoint
# (Pdb) fragments.zbuf.shape
# torch.Size([8, 512, 512, 1])
# depth_image = fragments.zbuf[0, ..., 0].cpu().numpy() # Take the nearest point's depth
# depth_image = (depth_image - depth_image.min()) / (depth_image.max()-depth_image.min())
# imageio.imwrite('tmp/depth.jpg', (depth_image*255.0).astype(np.uint8))
# st()
points_to_visible_pixels = fragments_idx[visible_pixels]
# ! visualize the results
# for debug
normal = x[:, 3:6, ...]
normal_map = (normal * 127.5 + 127.5).float().to(
torch.uint8) # BV 3 H W
st()
pass
else:
token_xyz = self.spatial_token_reshape(token_xyz)
h = self.spatial_token_reshape(
h) # V frames merge to a single latent here.
h = h + self.xyz_pos_embed(token_xyz) # directly add PE to h here.
# ! PE over surface fps-pcd
pcd_h = self.xyz_pos_embed(pcd) # directly add PE to h here.
# 2. fps sampling surface as pcd-structured latent.
query_pcd_h, query_pcd_xyz = self._process_token_xyz(pcd, pcd_h)
# 2.5 Cross attention to aggregate from all tokens.
if self.ca_no_pcd:
h = self.agg_ca(query_pcd_h, h)
else:
h = self.agg_ca(
query_pcd_h, torch.cat([h, pcd_h], dim=1)
) # cross attend to aggregate info from both vae-h and pcd-h
# 3. add vit TX (5 layers, concat xyz-PE)
# h = h + self.xyz_pos_embed(fps_xyz) # TODO, add PE of query pts. directly add to h here.
h = self.srt.transformer(h) # B L C
h = self.Mlp_out(h) # equivalent to conv_out, 256 -> 8 in sd-VAE
# h = einops.rearrange(h, 'B L C -> B C L') # for VAE compat
return {
'h': h,
'query_pcd_xyz': query_pcd_xyz
} # h_0, point cloud-structured latent space. For VAE later.
class HybridEncoderPCDStructuredLatentUniformFPS(
HybridEncoderPCDStructuredLatent):
def __init__(self, num_frames, latent_num=768, **kwargs):
super().__init__(num_frames, latent_num, **kwargs)
self.ca_no_pcd = True # check speed up ratio
def _process_token_xyz(self, pcd, pcd_h):
# ! 16x uniform downsample before FPS.
rand_start_pt = random.randint(0, 16)
# rand_start_pt = 0
query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# pcd[:, rand_start_pt::16], K=self.latent_num, random_start_point=False) # B self.latent_num
pcd[:, rand_start_pt::16],
K=self.latent_num,
random_start_point=True) # B self.latent_num
query_pcd_h = masked_gather(pcd_h[:, rand_start_pt::16],
fps_idx) # torch.gather with dim expansion
# st()
# ! fps very slow on high-res pcd
# query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# pcd, K=self.latent_num, random_start_point=True) # B self.latent_num
# query_pcd_h = masked_gather(pcd_h, fps_idx) # torch.gather with dim expansion
# pcu.save_mesh_v(f'xyz.ply', xyz[0].float().detach().permute(1,2,0).reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# pcu.save_mesh_v(f'fps_xyz.ply', fps_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),) # check result first, before fps sampling
# pcu.save_mesh_v(f'query_pcd_xyz.ply', query_pcd_xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
# pcu.save_mesh_v(f'pcd_xyz.ply', pcd[0].float().detach().reshape(-1,3).cpu().numpy(),)
# xyz = self.spatial_token_reshape(xyz)
# pcu.save_mesh_v(f'xyz_new.ply', xyz[0].float().detach().reshape(-1,3).cpu().numpy(),)
return query_pcd_h, query_pcd_xyz
class HybridEncoderPCDStructuredLatentSNoPCD(HybridEncoderPCDStructuredLatent):
def __init__(self, num_frames, latent_num=768, **kwargs):
super().__init__(num_frames, latent_num, **kwargs)
self.ca_no_pcd = True
class HybridEncoderPCDStructuredLatentSNoPCD_PC2(HybridEncoderPCDStructuredLatentSNoPCD):
def __init__(self, num_frames, latent_num=768, **kwargs):
super().__init__(num_frames, latent_num, **kwargs)
self.pc2 = True
class HybridEncoderPCDStructuredLatentSNoPCD_PixelAlignedQuery(
HybridEncoderPCDStructuredLatent):
def __init__(self, num_frames, latent_num=768, **kwargs):
super().__init__(num_frames, latent_num, **kwargs)
self.ca_no_pcd = True
self.pixel_aligned_query = True
self.F = 4 # pixel-aligned query from nearest F views
del self.agg_ca # for average pooling now.
def _pcd_to_homo(self, pcd):
return torch.cat([pcd, torch.ones_like(pcd[..., 0:1])], -1)
# ! FPS sampling
def _process_token_xyz(self, pcd, token_xyz, h, c, x=None):
V = c['cam_pos'].shape[1]
# (Pdb) p c.keys()
# dict_keys(['source_cv2wT_quat', 'cam_view', 'cam_view_proj', 'cam_pos', 'tanfov', 'orig_pose', 'orig_c2w', 'orig_w2c'])
# (Pdb) p c['cam_view'].shape
# torch.Size([8, 9, 4, 4])
# (Pdb) p c['cam_pos'].shape
# torch.Size([8, 9, 3])
# ! 16x uniform downsample before FPS.
# rand_start_pt = random.randint(0,16)
# query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# pcd[:, rand_start_pt::16], K=self.latent_num, random_start_point=True) # B self.latent_num
# query_pcd_h = masked_gather(pcd_h[:, rand_start_pt::16], fps_idx) # torch.gather with dim expansion
# ! fps very slow on high-res pcd, but better.
# '''
query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
pcd, K=self.latent_num, random_start_point=True) # B self.latent_num
# query_pcd_h = masked_gather(pcd_h, fps_idx) # torch.gather with dim expansion
# '''
# ! use unprojected xyz for pixel-aligned projection check
# query_pcd_xyz = self.spatial_token_reshape(token_xyz)
B, N = query_pcd_xyz.shape[:2]
normal = x[:, 3:6, ...]
normal_map = (normal * 127.5 + 127.5).float().to(
torch.uint8) # BV 3 H W
normal_map = einops.rearrange(normal_map,
'(B V) C H W -> B V C H W',
B=B,
V=V).detach().cpu() # V C H W
img_size = normal_map.shape[-1]
# ! ====== single-view debug here
for b in range(c['orig_w2c'].shape[0]):
for V in range(c['orig_w2c'].shape[1]):
selected_normal = normal_map[b, V]
proj_point = c['orig_w2c'][b, V] @ self._pcd_to_homo(query_pcd_xyz[b]).permute(1, 0)
proj_point[:2, ...] /= proj_point[2, ...]
proj_point[2, ...] = 1 # homo
intrin = c['orig_intrin'][b, V]
proj_point = intrin @ proj_point[:3]
proj_point = proj_point.permute(1,0)[..., :2] # 768 4
# st()
# proj_point = c['cam_view_proj'][b, V] @ self._pcd_to_homo(query_pcd_xyz[b]).permute(1, 0)
# plot proj_point and save
for uv_idx in range(proj_point.shape[0]):
# uv = proj_point[uv_idx] * 127.5 + 127.5
# uv = proj_point[uv_idx] * 127.5 + 127.5
uv = proj_point[uv_idx] * img_size
x, y = int(uv[0].clip(0, img_size)), int(uv[1].clip(0, img_size))
selected_normal[:, max(y - 1, 0):min(y + 1, img_size),
max(x - 1, 0):min(x + 1, img_size)] = torch.Tensor([
255, 0, 0
]).reshape(3, 1, 1).to(selected_normal) # set to red
torchvision.utils.save_image(selected_normal.float(),
f'tmp/pifu_normal_{b}_{V}.jpg',
normalize=True,
value_range=(0, 255))
st()
pass
st()
# ! ====== single-view debug done
# ! project pcd to each views
batched_query_pcd = einops.repeat(self._pcd_to_homo(query_pcd_xyz),
'B N C -> (B V N) C 1',
V=V)
batched_cam_view_proj = einops.repeat(c['cam_view_proj'],
'B V H W -> (B V N) H W',
N=N)
batched_proj_uv = einops.rearrange(
(batched_cam_view_proj @ batched_query_pcd),
'(B V N) L 1 -> (B V) L N',
B=B,
V=V,
N=N) # BV 4 N
batched_proj_uv = batched_proj_uv[..., :2, :] # BV N 2
# draw projected UV coordinate on 2d normal map
# idx_to_vis = 15 * 32 + 16 # middle of the img
# idx_to_vis = 16 * 6 + 15 * 32 + 16 # middle of the img
idx_to_vis = 0 # use fps points here
# st()
selected_proj_uv = einops.rearrange(batched_proj_uv,
'(B V) C N -> B V C N',
B=B,
V=V,
N=N)[0, ...,
idx_to_vis] # V 2 N -> V 2
# selected_normal = einops.rearrange(normal_map,
# '(B V) C H W -> B V C H W',
# B=B,
# V=V)[0].detach().cpu() # V C H W
for uv_idx in range(selected_proj_uv.shape[0]):
uv = selected_proj_uv[uv_idx] * 127.5 + 127.5
x, y = int(uv[0].clip(0, 255)), int(uv[1].clip(0, 255))
selected_normal[uv_idx, :,
max(y - 5, 0):min(y + 5, 255),
max(x - 5, 0):min(x + 5, 255)] = torch.Tensor([
255, 0, 0
]).reshape(3, 1,
1).to(selected_normal) # set to red
# selected_normal[uv_idx, :, max(y-5, 0):min(y+5, 255), max(x-5,0):min(x+5,255)] = torch.Tensor([255,0,0]).to(selected_normal) # set to red
# st()
torchvision.utils.save_image(selected_normal.float(),
'pifu_normal.jpg',
normalize=True,
value_range=(0, 255))
st()
pass
# ! grid sample
query_pcd_h = index(
h, batched_proj_uv) # h: (B V) C H W, uv: (B V) N 2 -> BV 256 768
query_pcd_h_to_gather = einops.rearrange(query_pcd_h,
'(B V) C N -> B N V C',
B=B,
V=V,
N=N)
# ! find nearest F views
_, knn_idx, _ = pytorch3d.ops.knn_points(
query_pcd_xyz, c['cam_pos'], K=self.F,
return_nn=False) # knn_idx: B N F
knn_idx_expanded = knn_idx[..., None].expand(
-1, -1, -1, query_pcd_h_to_gather.shape[-1]) # B N F -> B N F C
knn_pcd_h = torch.gather(
query_pcd_h_to_gather, dim=2,
index=knn_idx_expanded) # torch.Size([8, 768, 4, 256])
# average pooling knn feature.
query_pcd_h = knn_pcd_h.mean(dim=2)
# add PE
pcd_h = self.xyz_pos_embed(query_pcd_xyz) # pcd_h as PE feature.
query_pcd_h = query_pcd_h + pcd_h
# TODO: QKV aggregation with pcd_h as q, query_pcd_h as kv. Requires gather?
'''not used; binary mask for aggregation.
# * mask idx not used anymore. torch.gather() instead, more flexible.
# knn_idx_mask = torch.zeros((B,N,V), device=knn_idx.device)
# knn_idx_mask.scatter_(dim=2, index=knn_idx, src=torch.ones_like(knn_idx_mask)) # ! B N V
# try gather
# gather_idx = einops.rearrange(knn_idx_mask, 'B N V -> B N V 1').bool()
# query_pcd_h = einops.rearrange(query_pcd_h, "(B V) C N -> B N V C", B=pcd_h.shape[0], N=self.latent_num, V=V) # torch.Size([8, 768, 4, 256])
# ! apply KNN mask and average the feature.
# query_pcd_h = einops.reduce(query_pcd_h * knn_idx_mask.unsqueeze(-1), 'B N V C -> B N C', 'sum') / self.F # B 768 256. average pooling aggregated feature, like in pifu.
'''
'''
# pixel-aligned projection, not efficient enough.
knn_cam_view_proj = pytorch3d.ops.knn_gather(einops.rearrange(c['cam_view_proj'], 'B V H W-> B V (H W)'), knn_idx) # get corresponding cam_view_projection matrix (P matrix)
knn_cam_view_proj = einops.rearrange(knn_cam_view_proj, 'B N F (H W) -> (B N F) H W', H=4, W=4) # for matmul. H=W=4 here, P matrix.
batched_query_pcd = einops.repeat(self._pcd_to_homo(query_pcd_xyz), 'B N C -> (B N F) C 1', F=self.F)
xyz = knn_cam_view_proj @ batched_query_pcd # BNF 4 1
# st()
knn_spatial_feat = pytorch3d.ops.knn_gather(einops.rearrange(h, '(B V) C H W -> B V (C H W)', V=self.num_frames), knn_idx) # get corresponding feat for grid_sample
knn_spatial_feat = einops.rearrange(knn_spatial_feat, 'B N F (C H W) -> (B N F) C H W', C=h.shape[-3], H=h.shape[-2], W=h.shape[-1])
'''
# grid_sample
# https://github.com/shunsukesaito/PIFu/blob/f0a9c99ef887e1eb360e865a87aa5f166231980e/lib/geometry.py#L15
# average pooling multi-view extracted information
# return query_pcd_h, query_pcd_xyz
return query_pcd_h, query_pcd_xyz
|