File size: 25,057 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import argparse
import io
import os
import random
import warnings
import zipfile
from abc import ABC, abstractmethod
from contextlib import contextmanager
from functools import partial
from multiprocessing import cpu_count
from multiprocessing.pool import ThreadPool
from typing import Iterable, Optional, Tuple

import numpy as np
import requests
import tensorflow.compat.v1 as tf
from scipy import linalg
from tqdm.auto import tqdm

INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
INCEPTION_V3_PATH = "classify_image_graph_def.pb"

FID_POOL_NAME = "pool_3:0"
FID_SPATIAL_NAME = "mixed_6/conv:0"


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("ref_batch", help="path to reference batch npz file")
    parser.add_argument("sample_batch", help="path to sample batch npz file")
    args = parser.parse_args()

    config = tf.ConfigProto(
        allow_soft_placement=True  # allows DecodeJpeg to run on CPU in Inception graph
    )
    config.gpu_options.allow_growth = True
    evaluator = Evaluator(tf.Session(config=config))

    print("warming up TensorFlow...")
    # This will cause TF to print a bunch of verbose stuff now rather
    # than after the next print(), to help prevent confusion.
    evaluator.warmup()

    print("computing reference batch activations...")
    ref_acts = evaluator.read_activations(args.ref_batch)
    print("computing/reading reference batch statistics...")
    ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)

    print("computing sample batch activations...")
    sample_acts = evaluator.read_activations(args.sample_batch)
    print("computing/reading sample batch statistics...")
    sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)

    print("Computing evaluations...")
    print("Inception Score:", evaluator.compute_inception_score(sample_acts[0]))
    print("FID:", sample_stats.frechet_distance(ref_stats))
    print("sFID:", sample_stats_spatial.frechet_distance(ref_stats_spatial))
    prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
    print("Precision:", prec)
    print("Recall:", recall)


class InvalidFIDException(Exception):
    pass


class FIDStatistics:
    def __init__(self, mu: np.ndarray, sigma: np.ndarray):
        self.mu = mu
        self.sigma = sigma

    def frechet_distance(self, other, eps=1e-6):
        """
        Compute the Frechet distance between two sets of statistics.
        """
        # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
        mu1, sigma1 = self.mu, self.sigma
        mu2, sigma2 = other.mu, other.sigma

        mu1 = np.atleast_1d(mu1)
        mu2 = np.atleast_1d(mu2)

        sigma1 = np.atleast_2d(sigma1)
        sigma2 = np.atleast_2d(sigma2)

        assert (
            mu1.shape == mu2.shape
        ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
        assert (
            sigma1.shape == sigma2.shape
        ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"

        diff = mu1 - mu2

        # product might be almost singular
        covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
        if not np.isfinite(covmean).all():
            msg = (
                "fid calculation produces singular product; adding %s to diagonal of cov estimates"
                % eps
            )
            warnings.warn(msg)
            offset = np.eye(sigma1.shape[0]) * eps
            covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

        # numerical error might give slight imaginary component
        if np.iscomplexobj(covmean):
            if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
                m = np.max(np.abs(covmean.imag))
                raise ValueError("Imaginary component {}".format(m))
            covmean = covmean.real

        tr_covmean = np.trace(covmean)

        return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean


class Evaluator:
    def __init__(
        self,
        session,
        batch_size=64,
        softmax_batch_size=512,
    ):
        self.sess = session
        self.batch_size = batch_size
        self.softmax_batch_size = softmax_batch_size
        self.manifold_estimator = ManifoldEstimator(session)
        with self.sess.graph.as_default():
            self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
            self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
            self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
            self.softmax = _create_softmax_graph(self.softmax_input)

    def warmup(self):
        self.compute_activations(np.zeros([1, 8, 64, 64, 3]))

    def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
        with open_npz_array(npz_path, "arr_0") as reader:
            return self.compute_activations(reader.read_batches(self.batch_size))

    def compute_activations(self, batches: Iterable[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
        """
        Compute image features for downstream evals.

        :param batches: a iterator over NHWC numpy arrays in [0, 255].
        :return: a tuple of numpy arrays of shape [N x X], where X is a feature
                 dimension. The tuple is (pool_3, spatial).
        """
        preds = []
        spatial_preds = []
        for batch in tqdm(batches):
            batch = batch.astype(np.float32)
            pred, spatial_pred = self.sess.run(
                [self.pool_features, self.spatial_features], {self.image_input: batch}
            )
            preds.append(pred.reshape([pred.shape[0], -1]))
            spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
        return (
            np.concatenate(preds, axis=0),
            np.concatenate(spatial_preds, axis=0),
        )

    def read_statistics(
        self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
    ) -> Tuple[FIDStatistics, FIDStatistics]:
        obj = np.load(npz_path)
        if "mu" in list(obj.keys()):
            return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
                obj["mu_s"], obj["sigma_s"]
            )
        return tuple(self.compute_statistics(x) for x in activations)

    def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
        mu = np.mean(activations, axis=0)
        sigma = np.cov(activations, rowvar=False)
        return FIDStatistics(mu, sigma)

    def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
        softmax_out = []
        for i in range(0, len(activations), self.softmax_batch_size):
            acts = activations[i : i + self.softmax_batch_size]
            softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
        preds = np.concatenate(softmax_out, axis=0)
        # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
        scores = []
        for i in range(0, len(preds), split_size):
            part = preds[i : i + split_size]
            kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
            kl = np.mean(np.sum(kl, 1))
            scores.append(np.exp(kl))
        return float(np.mean(scores))

    def compute_prec_recall(
        self, activations_ref: np.ndarray, activations_sample: np.ndarray
    ) -> Tuple[float, float]:
        radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
        radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
        pr = self.manifold_estimator.evaluate_pr(
            activations_ref, radii_1, activations_sample, radii_2
        )
        return (float(pr[0][0]), float(pr[1][0]))


class ManifoldEstimator:
    """
    A helper for comparing manifolds of feature vectors.

    Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
    """

    def __init__(
        self,
        session,
        row_batch_size=10000,
        col_batch_size=10000,
        nhood_sizes=(3,),
        clamp_to_percentile=None,
        eps=1e-5,
    ):
        """
        Estimate the manifold of given feature vectors.

        :param session: the TensorFlow session.
        :param row_batch_size: row batch size to compute pairwise distances
                               (parameter to trade-off between memory usage and performance).
        :param col_batch_size: column batch size to compute pairwise distances.
        :param nhood_sizes: number of neighbors used to estimate the manifold.
        :param clamp_to_percentile: prune hyperspheres that have radius larger than
                                    the given percentile.
        :param eps: small number for numerical stability.
        """
        self.distance_block = DistanceBlock(session)
        self.row_batch_size = row_batch_size
        self.col_batch_size = col_batch_size
        self.nhood_sizes = nhood_sizes
        self.num_nhoods = len(nhood_sizes)
        self.clamp_to_percentile = clamp_to_percentile
        self.eps = eps

    def warmup(self):
        feats, radii = (
            np.zeros([1, 2048], dtype=np.float32),
            np.zeros([1, 1], dtype=np.float32),
        )
        self.evaluate_pr(feats, radii, feats, radii)

    def manifold_radii(self, features: np.ndarray) -> np.ndarray:
        num_images = len(features)

        # Estimate manifold of features by calculating distances to k-NN of each sample.
        radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
        distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
        seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)

        for begin1 in range(0, num_images, self.row_batch_size):
            end1 = min(begin1 + self.row_batch_size, num_images)
            row_batch = features[begin1:end1]

            for begin2 in range(0, num_images, self.col_batch_size):
                end2 = min(begin2 + self.col_batch_size, num_images)
                col_batch = features[begin2:end2]

                # Compute distances between batches.
                distance_batch[
                    0 : end1 - begin1, begin2:end2
                ] = self.distance_block.pairwise_distances(row_batch, col_batch)

            # Find the k-nearest neighbor from the current batch.
            radii[begin1:end1, :] = np.concatenate(
                [
                    x[:, self.nhood_sizes]
                    for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
                ],
                axis=0,
            )

        if self.clamp_to_percentile is not None:
            max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
            radii[radii > max_distances] = 0
        return radii

    def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
        """
        Evaluate if new feature vectors are at the manifold.
        """
        num_eval_images = eval_features.shape[0]
        num_ref_images = radii.shape[0]
        distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
        batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
        max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
        nearest_indices = np.zeros([num_eval_images], dtype=np.int32)

        for begin1 in range(0, num_eval_images, self.row_batch_size):
            end1 = min(begin1 + self.row_batch_size, num_eval_images)
            feature_batch = eval_features[begin1:end1]

            for begin2 in range(0, num_ref_images, self.col_batch_size):
                end2 = min(begin2 + self.col_batch_size, num_ref_images)
                ref_batch = features[begin2:end2]

                distance_batch[
                    0 : end1 - begin1, begin2:end2
                ] = self.distance_block.pairwise_distances(feature_batch, ref_batch)

            # From the minibatch of new feature vectors, determine if they are in the estimated manifold.
            # If a feature vector is inside a hypersphere of some reference sample, then
            # the new sample lies at the estimated manifold.
            # The radii of the hyperspheres are determined from distances of neighborhood size k.
            samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
            batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)

            max_realism_score[begin1:end1] = np.max(
                radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
            )
            nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)

        return {
            "fraction": float(np.mean(batch_predictions)),
            "batch_predictions": batch_predictions,
            "max_realisim_score": max_realism_score,
            "nearest_indices": nearest_indices,
        }

    def evaluate_pr(
        self,
        features_1: np.ndarray,
        radii_1: np.ndarray,
        features_2: np.ndarray,
        radii_2: np.ndarray,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """
        Evaluate precision and recall efficiently.

        :param features_1: [N1 x D] feature vectors for reference batch.
        :param radii_1: [N1 x K1] radii for reference vectors.
        :param features_2: [N2 x D] feature vectors for the other batch.
        :param radii_2: [N x K2] radii for other vectors.
        :return: a tuple of arrays for (precision, recall):
                 - precision: an np.ndarray of length K1
                 - recall: an np.ndarray of length K2
        """
        features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
        features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
        for begin_1 in range(0, len(features_1), self.row_batch_size):
            end_1 = begin_1 + self.row_batch_size
            batch_1 = features_1[begin_1:end_1]
            for begin_2 in range(0, len(features_2), self.col_batch_size):
                end_2 = begin_2 + self.col_batch_size
                batch_2 = features_2[begin_2:end_2]
                batch_1_in, batch_2_in = self.distance_block.less_thans(
                    batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
                )
                features_1_status[begin_1:end_1] |= batch_1_in
                features_2_status[begin_2:end_2] |= batch_2_in
        return (
            np.mean(features_2_status.astype(np.float64), axis=0),
            np.mean(features_1_status.astype(np.float64), axis=0),
        )


class DistanceBlock:
    """
    Calculate pairwise distances between vectors.

    Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
    """

    def __init__(self, session):
        self.session = session

        # Initialize TF graph to calculate pairwise distances.
        with session.graph.as_default():
            self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
            self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
            distance_block_16 = _batch_pairwise_distances(
                tf.cast(self._features_batch1, tf.float16),
                tf.cast(self._features_batch2, tf.float16),
            )
            self.distance_block = tf.cond(
                tf.reduce_all(tf.math.is_finite(distance_block_16)),
                lambda: tf.cast(distance_block_16, tf.float32),
                lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
            )

            # Extra logic for less thans.
            self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
            self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
            dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
            self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
            self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)

    def pairwise_distances(self, U, V):
        """
        Evaluate pairwise distances between two batches of feature vectors.
        """
        return self.session.run(
            self.distance_block,
            feed_dict={self._features_batch1: U, self._features_batch2: V},
        )

    def less_thans(self, batch_1, radii_1, batch_2, radii_2):
        return self.session.run(
            [self._batch_1_in, self._batch_2_in],
            feed_dict={
                self._features_batch1: batch_1,
                self._features_batch2: batch_2,
                self._radii1: radii_1,
                self._radii2: radii_2,
            },
        )


def _batch_pairwise_distances(U, V):
    """
    Compute pairwise distances between two batches of feature vectors.
    """
    with tf.variable_scope("pairwise_dist_block"):
        # Squared norms of each row in U and V.
        norm_u = tf.reduce_sum(tf.square(U), 1)
        norm_v = tf.reduce_sum(tf.square(V), 1)

        # norm_u as a column and norm_v as a row vectors.
        norm_u = tf.reshape(norm_u, [-1, 1])
        norm_v = tf.reshape(norm_v, [1, -1])

        # Pairwise squared Euclidean distances.
        D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)

    return D


class NpzArrayReader(ABC):
    @abstractmethod
    def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
        pass

    @abstractmethod
    def remaining(self) -> int:
        pass

    def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
        def gen_fn():
            while True:
                batch = self.read_batch(batch_size)
                if batch is None:
                    break
                yield batch

        rem = self.remaining()
        num_batches = rem // batch_size + int(rem % batch_size != 0)
        return BatchIterator(gen_fn, num_batches)


class BatchIterator:
    def __init__(self, gen_fn, length):
        self.gen_fn = gen_fn
        self.length = length

    def __len__(self):
        return self.length

    def __iter__(self):
        return self.gen_fn()


class StreamingNpzArrayReader(NpzArrayReader):
    def __init__(self, arr_f, shape, dtype):
        self.arr_f = arr_f
        self.shape = shape
        self.dtype = dtype
        self.idx = 0

    def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
        if self.idx >= self.shape[0]:
            return None

        bs = min(batch_size, self.shape[0] - self.idx)
        self.idx += bs

        if self.dtype.itemsize == 0:
            return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)

        read_count = bs * np.prod(self.shape[1:])
        read_size = int(read_count * self.dtype.itemsize)
        data = _read_bytes(self.arr_f, read_size, "array data")
        return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])

    def remaining(self) -> int:
        return max(0, self.shape[0] - self.idx)


class MemoryNpzArrayReader(NpzArrayReader):
    def __init__(self, arr):
        self.arr = arr
        self.idx = 0

    @classmethod
    def load(cls, path: str, arr_name: str):
        with open(path, "rb") as f:
            arr = np.load(f)[arr_name]
        return cls(arr)

    def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
        if self.idx >= self.arr.shape[0]:
            return None

        res = self.arr[self.idx : self.idx + batch_size]
        self.idx += batch_size
        return res

    def remaining(self) -> int:
        return max(0, self.arr.shape[0] - self.idx)


@contextmanager
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
    with _open_npy_file(path, arr_name) as arr_f:
        version = np.lib.format.read_magic(arr_f)
        if version == (1, 0):
            header = np.lib.format.read_array_header_1_0(arr_f)
        elif version == (2, 0):
            header = np.lib.format.read_array_header_2_0(arr_f)
        else:
            yield MemoryNpzArrayReader.load(path, arr_name)
            return
        shape, fortran, dtype = header
        if fortran or dtype.hasobject:
            yield MemoryNpzArrayReader.load(path, arr_name)
        else:
            yield StreamingNpzArrayReader(arr_f, shape, dtype)


def _read_bytes(fp, size, error_template="ran out of data"):
    """
    Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886

    Read from file-like object until size bytes are read.
    Raises ValueError if not EOF is encountered before size bytes are read.
    Non-blocking objects only supported if they derive from io objects.
    Required as e.g. ZipExtFile in python 2.6 can return less data than
    requested.
    """
    data = bytes()
    while True:
        # io files (default in python3) return None or raise on
        # would-block, python2 file will truncate, probably nothing can be
        # done about that.  note that regular files can't be non-blocking
        try:
            r = fp.read(size - len(data))
            data += r
            if len(r) == 0 or len(data) == size:
                break
        except io.BlockingIOError:
            pass
    if len(data) != size:
        msg = "EOF: reading %s, expected %d bytes got %d"
        raise ValueError(msg % (error_template, size, len(data)))
    else:
        return data


@contextmanager
def _open_npy_file(path: str, arr_name: str):
    with open(path, "rb") as f:
        with zipfile.ZipFile(f, "r") as zip_f:
            if f"{arr_name}.npy" not in zip_f.namelist():
                raise ValueError(f"missing {arr_name} in npz file")
            with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
                yield arr_f


def _download_inception_model():
    if os.path.exists(INCEPTION_V3_PATH):
        return
    print("downloading InceptionV3 model...")
    with requests.get(INCEPTION_V3_URL, stream=True) as r:
        r.raise_for_status()
        tmp_path = INCEPTION_V3_PATH + ".tmp"
        with open(tmp_path, "wb") as f:
            for chunk in tqdm(r.iter_content(chunk_size=8192)):
                f.write(chunk)
        os.rename(tmp_path, INCEPTION_V3_PATH)


def _create_feature_graph(input_batch):
    _download_inception_model()
    prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
    with open(INCEPTION_V3_PATH, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    pool3, spatial = tf.import_graph_def(
        graph_def,
        input_map={f"ExpandDims:0": input_batch},
        return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
        name=prefix,
    )
    _update_shapes(pool3)
    spatial = spatial[..., :7]
    return pool3, spatial


def _create_softmax_graph(input_batch):
    _download_inception_model()
    prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
    with open(INCEPTION_V3_PATH, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    (matmul,) = tf.import_graph_def(
        graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
    )
    w = matmul.inputs[1]
    logits = tf.matmul(input_batch, w)
    return tf.nn.softmax(logits)


def _update_shapes(pool3):
    # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
    ops = pool3.graph.get_operations()
    for op in ops:
        for o in op.outputs:
            shape = o.get_shape()
            if shape._dims is not None:  # pylint: disable=protected-access
                # shape = [s.value for s in shape] TF 1.x
                shape = [s for s in shape]  # TF 2.x
                new_shape = []
                for j, s in enumerate(shape):
                    if s == 1 and j == 0:
                        new_shape.append(None)
                    else:
                        new_shape.append(s)
                o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
    return pool3


def _numpy_partition(arr, kth, **kwargs):
    num_workers = min(cpu_count(), len(arr))
    chunk_size = len(arr) // num_workers
    extra = len(arr) % num_workers

    start_idx = 0
    batches = []
    for i in range(num_workers):
        size = chunk_size + (1 if i < extra else 0)
        batches.append(arr[start_idx : start_idx + size])
        start_idx += size

    with ThreadPool(num_workers) as pool:
        return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))


if __name__ == "__main__":
    main()