File size: 5,015 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
Train a diffusion model on images.
"""
import sys
import os
sys.path.append('.')

import torch as th
import torch.multiprocessing as mp

import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
    args_to_dict,
    add_dict_to_argparser,
)
from nsr.train_util import TrainLoop3DRec as TrainLoop
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, create_Triplane, loss_defaults
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass

from pdb import set_trace as st
import json

from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default

import random
import traceback
import json
import sys
import os

def training_loop(args):
    # dist_util.setup_dist(rank, master_addr, master_port, args.gpus)
    dist_util.setup_dist(args)

    # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
    logger.configure(dir=args.logdir)

    # print(args)
    with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
        json.dump(vars(args), f, indent=2)

    logger.log("creating data loader...")
    # TODO, load shapenet data
    # data = load_data(
    data = load_memory_data(
        file_path=args.data_dir,
        batch_size=args.batch_size,
        reso=args.image_size,
        reso_encoder=args.image_size_encoder, # 224 -> 128
        num_workers=args.num_workers,
        load_depth=args.depth_lambda > 0
        # load_depth=True # for evaluation
    )
    eval_data = load_eval_data(
        file_path=args.data_dir,
        batch_size=args.eval_batch_size,
        reso=args.image_size,
        reso_encoder=args.image_size_encoder, # 224 -> 128
        num_workers=args.num_workers,
        load_depth=True # for evaluation
    )
    # try dry run
    # batch = next(data)
    # batch = None

    # logger.log("creating model and diffusion...")
    logger.log("creating encoder and NSR decoder...")

    
    auto_encoder = create_Triplane( # basically overfitting tirplane
        **args_to_dict(args,
                       encoder_and_nsr_defaults().keys()))

    # auto_encoder = create_3DAE_model(
    #     **args_to_dict(args,
    #                    encoder_and_nsr_defaults().keys()))
    auto_encoder.to(dist_util.dev())

    # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)


    opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()) )
    loss_class = E3DGELossClass(dist_util.dev(), opt).to(dist_util.dev())

    logger.log("training...")
    TrainLoop(
        rec_model=auto_encoder,
        # encoder,
        # decoder
        loss_class=loss_class,
        # diffusion=diffusion,
        data=data,
        eval_data=eval_data,
        # data=batch,
        batch_size=args.batch_size,
        microbatch=args.microbatch,
        lr=args.lr,
        ema_rate=args.ema_rate,
        log_interval=args.log_interval,
        save_interval=args.save_interval,
        resume_checkpoint=args.resume_checkpoint,
        use_fp16=args.use_fp16,
        fp16_scale_growth=args.fp16_scale_growth,
        weight_decay=args.weight_decay,
        lr_anneal_steps=args.lr_anneal_steps,
        eval_interval=5000
    ).run_loop() # ! overfitting


def create_argparser(**kwargs):
    # defaults.update(model_and_diffusion_defaults())

    defaults = dict(
        num_workers=4,
        local_rank=0,
        gpus=1,
        image_size=128,
        image_size_encoder=224,
        iterations=150000,
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        eval_batch_size=8,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=10,
        save_interval=10000,
        resume_checkpoint="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        data_dir="",
        # load_depth=False, # TODO
        logdir="/mnt/lustre/yslan/logs/nips23/",
    )

    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(loss_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    return parser



if __name__ == "__main__":
    # os.environ[
    #     "TORCH_DISTRIBUTED_DEBUG"
    # ] = "DETAIL"  # set to DETAIL for runtime logging.
    # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"

    args = create_argparser().parse_args()
    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    opts = args

    args.rendering_kwargs = rendering_options_defaults(opts)

    # Launch processes.
    print('Launching processes...')

    try:
        training_loop(args)
    # except KeyboardInterrupt as e:
    except Exception as e:
        # print(e)
        traceback.print_exc()
        dist_util.cleanup() # clean port and socket when ctrl+c