Spaces:
Running
on
Zero
Running
on
Zero
File size: 64,296 Bytes
7f51798 a0896dd 7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 |
import math
from pathlib import Path
# from pytorch3d.ops import create_sphere
import torchvision
import point_cloud_utils as pcu
from tqdm import trange
import random
import einops
from einops import rearrange
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from functools import partial
from torch.profiler import profile, record_function, ProfilerActivity
from nsr.networks_stylegan2 import Generator as StyleGAN2Backbone
from nsr.volumetric_rendering.renderer import ImportanceRenderer, ImportanceRendererfg_bg
from nsr.volumetric_rendering.ray_sampler import RaySampler
from nsr.triplane import OSGDecoder, Triplane, Triplane_fg_bg_plane
# from nsr.losses.helpers import ResidualBlock
from utils.dust3r.heads.dpt_head import create_dpt_head_ln3diff
from utils.nerf_utils import get_embedder
from vit.vision_transformer import TriplaneFusionBlockv4_nested, TriplaneFusionBlockv4_nested_init_from_dino_lite, TriplaneFusionBlockv4_nested_init_from_dino_lite_merge_B_3L_C_withrollout, VisionTransformer, TriplaneFusionBlockv4_nested_init_from_dino
from .vision_transformer import Block, VisionTransformer
from .utils import trunc_normal_
from guided_diffusion import dist_util, logger
from pdb import set_trace as st
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from torch_utils.components import PixelShuffleUpsample, ResidualBlock, Upsample, PixelUnshuffleUpsample, Conv3x3TriplaneTransformation
from torch_utils.distributions.distributions import DiagonalGaussianDistribution
from nsr.superresolution import SuperresolutionHybrid2X, SuperresolutionHybrid4X
from torch.nn.parameter import Parameter, UninitializedParameter, UninitializedBuffer
from nsr.common_blks import ResMlp
from timm.models.vision_transformer import PatchEmbed, Mlp
from .vision_transformer import *
from dit.dit_models import get_2d_sincos_pos_embed
from dit.dit_decoder import DiTBlock2
from torch import _assert
from itertools import repeat
import collections.abc
from nsr.srt.layers import Transformer as SRT_TX
from nsr.srt.layers import PreNorm
# from diffusers.models.upsampling import Upsample2D
from torch_utils.components import NearestConvSR
from timm.models.vision_transformer import PatchEmbed
from utils.general_utils import matrix_to_quaternion, quaternion_raw_multiply, build_rotation
# from nsr.gs import GaussianRenderer
from utils.dust3r.heads import create_dpt_head
from ldm.modules.attention import MemoryEfficientCrossAttention, CrossAttention
# from nsr.geometry.camera.perspective_camera import PerspectiveCamera
# from nsr.geometry.render.neural_render import NeuralRender
# from nsr.geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
# from utils.mesh_util import xatlas_uvmap
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
def approx_gelu():
return nn.GELU(approximate="tanh")
def init_gaussian_prediction(gaussian_pred_mlp):
# https://github.com/szymanowiczs/splatter-image/blob/98b465731c3273bf8f42a747d1b6ce1a93faf3d6/configs/dataset/chairs.yaml#L15
out_channels = [3, 1, 3, 4, 3] # xyz, opacity, scale, rotation, rgb
scale_inits = [ # ! avoid affecting final value (offset)
0, #xyz_scale
0.0, #cfg.model.opacity_scale,
# 0.001, #cfg.model.scale_scale,
0, #cfg.model.scale_scale,
1, # rotation
0
] # rgb
bias_inits = [
0.0, # cfg.model.xyz_bias, no deformation here
0, # cfg.model.opacity_bias, sigmoid(0)=0.5 at init
-2.5, # scale_bias
0.0, # rotation
0.5
] # rgb
start_channels = 0
# for out_channel, b, s in zip(out_channels, bias, scale):
for out_channel, b, s in zip(out_channels, bias_inits, scale_inits):
# nn.init.xavier_uniform_(
# self.superresolution['conv_sr'].dpt.head[-1].weight[
# start_channels:start_channels + out_channel, ...], s)
nn.init.constant_(
gaussian_pred_mlp.weight[start_channels:start_channels +
out_channel, ...], s)
nn.init.constant_(
gaussian_pred_mlp.bias[start_channels:start_channels +
out_channel], b)
start_channels += out_channel
class PatchEmbedTriplane(nn.Module):
""" GroupConv patchembeder on triplane
"""
def __init__(
self,
img_size=32,
patch_size=2,
in_chans=4,
embed_dim=768,
norm_layer=None,
flatten=True,
bias=True,
plane_n=3,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.plane_n = plane_n
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0],
img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(in_chans,
embed_dim * self.plane_n,
kernel_size=patch_size,
stride=patch_size,
bias=bias,
groups=self.plane_n)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
# st()
B, C, H, W = x.shape
_assert(
H == self.img_size[0],
f"Input image height ({H}) doesn't match model ({self.img_size[0]})."
)
_assert(
W == self.img_size[1],
f"Input image width ({W}) doesn't match model ({self.img_size[1]})."
)
x = self.proj(x) # B 3*C token_H token_W
x = x.reshape(B, x.shape[1] // self.plane_n, self.plane_n, x.shape[-2],
x.shape[-1]) # B C 3 H W
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BC3HW -> B 3HW C
x = self.norm(x)
return x
# https://github.com/facebookresearch/MCC/blob/main/mcc_model.py#L81
class XYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim, multires=10):
super().__init__()
self.embed_dim = embed_dim
# no [cls] token here.
# ! use fixed PE here
self.embed_fn, self.embed_input_ch = get_embedder(multires)
# st()
# self.two_d_pos_embed = nn.Parameter(
# # torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
# torch.zeros(1, 64, embed_dim), requires_grad=False) # fixed sin-cos embedding
# self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.win_size = 8
self.xyz_projection = nn.Linear(self.embed_input_ch, embed_dim)
# self.blocks = nn.ModuleList([
# Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
# for _ in range(1)
# ])
# self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))
# self.initialize_weights()
# def initialize_weights(self):
# # torch.nn.init.normal_(self.cls_token, std=.02)
# two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=False)
# self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))
# torch.nn.init.normal_(self.invalid_xyz_token, std=.02)
def forward(self, xyz):
xyz = self.embed_fn(xyz) # PE encoding
xyz = self.xyz_projection(xyz) # linear projection
return xyz
class gaussian_prediction(nn.Module):
def __init__(
self,
query_dim,
) -> None:
super().__init__()
self.gaussian_pred = nn.Sequential(
nn.SiLU(), nn.Linear(query_dim, 14,
bias=True)) # TODO, init require
self.init_gaussian_prediction()
def init_gaussian_prediction(self):
# https://github.com/szymanowiczs/splatter-image/blob/98b465731c3273bf8f42a747d1b6ce1a93faf3d6/configs/dataset/chairs.yaml#L15
out_channels = [3, 1, 3, 4, 3] # xyz, opacity, scale, rotation, rgb
scale_inits = [ # ! avoid affecting final value (offset)
0, #xyz_scale
0.0, #cfg.model.opacity_scale,
# 0.001, #cfg.model.scale_scale,
0, #cfg.model.scale_scale,
1.0, # rotation
0
] # rgb
bias_inits = [
0.0, # cfg.model.xyz_bias, no deformation here
0, # cfg.model.opacity_bias, sigmoid(0)=0.5 at init
-2.5, # scale_bias
0.0, # rotation
0.5
] # rgb
start_channels = 0
# for out_channel, b, s in zip(out_channels, bias, scale):
for out_channel, b, s in zip(out_channels, bias_inits, scale_inits):
# nn.init.xavier_uniform_(
# self.superresolution['conv_sr'].dpt.head[-1].weight[
# start_channels:start_channels + out_channel, ...], s)
nn.init.constant_(
self.gaussian_pred[1].weight[start_channels:start_channels +
out_channel, ...], s)
nn.init.constant_(
self.gaussian_pred[1].bias[start_channels:start_channels +
out_channel], b)
start_channels += out_channel
def forward(self, x):
return self.gaussian_pred(x)
class surfel_prediction(nn.Module):
# for 2dgs
def __init__(
self,
query_dim,
) -> None:
super().__init__()
self.gaussian_pred = nn.Sequential(
nn.SiLU(), nn.Linear(query_dim, 13,
bias=True)) # TODO, init require
self.init_gaussian_prediction()
def init_gaussian_prediction(self):
# https://github.com/szymanowiczs/splatter-image/blob/98b465731c3273bf8f42a747d1b6ce1a93faf3d6/configs/dataset/chairs.yaml#L15
out_channels = [3, 1, 2, 4, 3] # xyz, opacity, scale, rotation, rgb
scale_inits = [ # ! avoid affecting final value (offset)
0, #xyz_scale
0.0, #cfg.model.opacity_scale,
# 0.001, #cfg.model.scale_scale,
0, #cfg.model.scale_scale,
1.0, # rotation
0
] # rgb
bias_inits = [
0.0, # cfg.model.xyz_bias, no deformation here
0, # cfg.model.opacity_bias, sigmoid(0)=0.5 at init
-2.5, # scale_bias
0, # scale bias, also 0
0.0, # rotation
0.5
] # rgb
start_channels = 0
# for out_channel, b, s in zip(out_channels, bias, scale):
for out_channel, b, s in zip(out_channels, bias_inits, scale_inits):
# nn.init.xavier_uniform_(
# self.superresolution['conv_sr'].dpt.head[-1].weight[
# start_channels:start_channels + out_channel, ...], s)
nn.init.constant_(
self.gaussian_pred[1].weight[start_channels:start_channels +
out_channel, ...], s)
nn.init.constant_(
self.gaussian_pred[1].bias[start_channels:start_channels +
out_channel], b)
start_channels += out_channel
def forward(self, x):
return self.gaussian_pred(x)
class pointInfinityWriteCA(gaussian_prediction):
def __init__(self,
query_dim,
context_dim,
heads=8,
dim_head=64,
dropout=0.0) -> None:
super().__init__(query_dim=query_dim)
self.write_ca = MemoryEfficientCrossAttention(query_dim, context_dim,
heads, dim_head, dropout)
def forward(self, x, z, return_x=False):
# x: point to write
# z: extracted latent
x = self.write_ca(x, z) # write from z to x
if return_x:
return self.gaussian_pred(x), x # ! integrate it into dit?
else:
return self.gaussian_pred(x) # ! integrate it into dit?
class pointInfinityWriteCA_cascade(pointInfinityWriteCA):
# gradually (in 6 times) add deformation offsets to the initialized canonical pts, follow PI
def __init__(self,
vit_depth,
query_dim,
context_dim,
heads=8,
dim_head=64,
dropout=0) -> None:
super().__init__(query_dim, context_dim, heads, dim_head, dropout)
del self.write_ca
# query_dim = 384 # to speed up CA compute
write_ca_interval = 12 // 4
# self.deform_pred = nn.Sequential( # to-gaussian layer
# nn.SiLU(), nn.Linear(query_dim, 3, bias=True)) # TODO, init require
# query_dim = 384 here
self.write_ca_blocks = nn.ModuleList([
MemoryEfficientCrossAttention(query_dim, context_dim,
heads=heads) # make it lite
for _ in range(write_ca_interval)
# for _ in range(write_ca_interval)
])
self.hooks = [3, 7, 11] # hard coded for now
# [(vit_depth * 1 // 3) - 1, (vit_depth * 2 // 4) - 1, (vit_depth * 3 // 4) - 1,
# vit_depth - 1]
def forward(self, x: torch.Tensor, z: list):
# x is the canonical point
# z: extracted latent (for different layers), all layers in dit
# TODO, optimize memory, no need to return all layers?
# st()
z = [z[hook] for hook in self.hooks]
# st()
for idx, ca_blk in enumerate(self.write_ca_blocks):
x = x + ca_blk(x, z[idx]) # learn residual feature
return self.gaussian_pred(x)
def create_sphere(radius, num_points):
# Generate spherical coordinates
phi = torch.linspace(0, 2 * torch.pi, num_points)
theta = torch.linspace(0, torch.pi, num_points)
phi, theta = torch.meshgrid(phi, theta, indexing='xy')
# Convert spherical coordinates to Cartesian coordinates
x = radius * torch.sin(theta) * torch.cos(phi)
y = radius * torch.sin(theta) * torch.sin(phi)
z = radius * torch.cos(theta)
# Stack x, y, z coordinates
points = torch.stack([x.flatten(), y.flatten(), z.flatten()], dim=1)
return points
class GS_Adaptive_Write_CA(nn.Module):
def __init__(
self,
query_dim,
context_dim,
f=4, # upsampling ratio
heads=8,
dim_head=64,
dropout=0.0) -> None:
super().__init__()
self.f = f
self.write_ca = MemoryEfficientCrossAttention(query_dim, context_dim,
heads, dim_head, dropout)
self.gaussian_residual_pred = nn.Sequential(
nn.SiLU(),
nn.Linear(query_dim, 14,
bias=True)) # predict residual, before activations
# ! hard coded
self.scene_extent = 0.9 # g-buffer, [-0.45, 0.45]
self.percent_dense = 0.01 # 3dgs official value
self.residual_offset_act = lambda x: torch.tanh(
x) * self.scene_extent * 0.015 # avoid large deformation
init_gaussian_prediction(self.gaussian_residual_pred[1])
# def densify_and_split(self, gaussians_base, base_gaussian_xyz_embed):
def forward(self,
gaussians_base,
gaussian_base_pre_activate,
gaussian_base_feat,
xyz_embed_fn,
shrink_scale=True):
# gaussians_base: xyz_base after activations and deform offset
# xyz_base: original features (before activations)
# ! use point embedder, or other features?
# base_gaussian_xyz_embed = xyz_embed_fn(gaussians_base[..., :3])
# x = self.densify_and_split(gaussians_base, base_gaussian_xyz_embed)
# ! densify
B, N = gaussians_base.shape[:2] # gaussians upsample factor
# n_init_points = self.get_xyz.shape[0]
pos, opacity, scaling, rotation = gaussians_base[
..., 0:3], gaussians_base[..., 3:4], gaussians_base[
..., 4:7], gaussians_base[..., 7:11]
# ! filter clone/densify based on scaling range
split_mask = scaling.max(
dim=-1
)[0] > self.scene_extent * self.percent_dense # shape: B 4096
# clone_mask = ~split_mask
stds = scaling.repeat_interleave(self.f, dim=1) # 0 0 1 1 2 2...
means = torch.zeros_like(stds)
samples = torch.normal(mean=means, std=stds) # B f*N 3
# rots = build_rotation(rotation).repeat(N, 1, 1)
# rots = rearrange(build_rotation(rearrange(rotation, 'B N ... -> (B N) ...')), '(B N) ... -> B N ...', B=B, N=N)
# rots = rots.repeat_interleave(self.f, dim=1) # B f*N 3 3
# torch.bmm only supports ndim=3 Tensor
# new_xyz = torch.matmul(rots, samples.unsqueeze(-1)).squeeze(-1) + pos.repeat_interleave(self.f, dim=1)
new_xyz = samples + pos.repeat_interleave(
self.f, dim=1) # ! no rotation for now
# new_xyz: B f*N 3
# ! new points to features
new_xyz_embed = xyz_embed_fn(new_xyz)
new_gaussian_embed = self.write_ca(
new_xyz_embed, gaussian_base_feat) # write from z to x
# ! predict gaussians residuals
gaussian_residual_pre_activate = self.gaussian_residual_pred(
new_gaussian_embed)
# ! add back. how to deal with new rotations? check the range first.
# scaling and rotation.
if shrink_scale:
gaussian_base_pre_activate[split_mask][
4:7] -= 1 # reduce scale for those points
gaussian_base_pre_activate_repeat = gaussian_base_pre_activate.repeat_interleave(
self.f, dim=1)
# new scaling
# ! pre-activate scaling value, shall be negative? since more values are 0.1 before softplus.
# TODO wrong here, shall get new scaling before repeat
gaussians = gaussian_residual_pre_activate + gaussian_base_pre_activate_repeat # learn the residual
new_gaussians_pos = new_xyz + self.residual_offset_act(
gaussians[..., :3])
return gaussians, new_gaussians_pos # return positions independently
class GS_Adaptive_Read_Write_CA(nn.Module):
def __init__(
self,
query_dim,
context_dim,
mlp_ratio,
vit_heads,
f=4, # upsampling ratio
heads=8,
dim_head=64,
dropout=0.0,
depth=2,
vit_blk=DiTBlock2) -> None:
super().__init__()
self.f = f
self.read_ca = MemoryEfficientCrossAttention(query_dim, context_dim,
heads, dim_head, dropout)
# more dit blocks
self.point_infinity_blocks = nn.ModuleList([
vit_blk(context_dim, num_heads=vit_heads, mlp_ratio=mlp_ratio)
for _ in range(depth) # since dit-b here
])
self.write_ca = MemoryEfficientCrossAttention(query_dim, context_dim,
heads, dim_head, dropout)
self.gaussian_residual_pred = nn.Sequential(
nn.SiLU(),
nn.Linear(query_dim, 14,
bias=True)) # predict residual, before activations
# ! hard coded
self.scene_extent = 0.9 # g-buffer, [-0.45, 0.45]
self.percent_dense = 0.01 # 3dgs official value
self.residual_offset_act = lambda x: torch.tanh(
x) * self.scene_extent * 0.015 # avoid large deformation
self.initialize_weights()
def initialize_weights(self):
init_gaussian_prediction(self.gaussian_residual_pred[1])
for block in self.point_infinity_blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# def densify_and_split(self, gaussians_base, base_gaussian_xyz_embed):
def forward(self, gaussians_base, gaussian_base_pre_activate,
gaussian_base_feat, latent_from_vit, vae_latent, xyz_embed_fn):
# gaussians_base: xyz_base after activations and deform offset
# xyz_base: original features (before activations)
# ========= START read CA ========
latent_from_vit = self.read_ca(latent_from_vit,
gaussian_base_feat) # z_i -> z_(i+1)
for blk_idx, block in enumerate(self.point_infinity_blocks):
latent_from_vit = block(latent_from_vit,
vae_latent) # vae_latent: c
# ========= END read CA ========
# ! use point embedder, or other features?
# base_gaussian_xyz_embed = xyz_embed_fn(gaussians_base[..., :3])
# x = self.densify_and_split(gaussians_base, base_gaussian_xyz_embed)
# ! densify
B, N = gaussians_base.shape[:2] # gaussians upsample factor
# n_init_points = self.get_xyz.shape[0]
pos, opacity, scaling, rotation = gaussians_base[
..., 0:3], gaussians_base[..., 3:4], gaussians_base[
..., 4:7], gaussians_base[..., 7:11]
# ! filter clone/densify based on scaling range
split_mask = scaling.max(
dim=-1
)[0] > self.scene_extent * self.percent_dense # shape: B 4096
# clone_mask = ~split_mask
stds = scaling.repeat_interleave(self.f, dim=1) # 0 0 1 1 2 2...
means = torch.zeros_like(stds)
samples = torch.normal(mean=means, std=stds) # B f*N 3
rots = build_rotation(rotation).repeat(N, 1, 1)
rots = rearrange(build_rotation(
rearrange(rotation, 'B N ... -> (B N) ...')),
'(B N) ... -> B N ...',
B=B,
N=N)
rots = rots.repeat_interleave(self.f, dim=1) # B f*N 3 3
# torch.bmm only supports ndim=3 Tensor
new_xyz = torch.matmul(
rots, samples.unsqueeze(-1)).squeeze(-1) + pos.repeat_interleave(
self.f, dim=1)
# new_xyz = samples + pos.repeat_interleave(
# self.f, dim=1) # ! no rotation for now
# new_xyz: B f*N 3
# ! new points to features
new_xyz_embed = xyz_embed_fn(new_xyz)
new_gaussian_embed = self.write_ca(
new_xyz_embed, latent_from_vit
) # ! use z_(i+1), rather than gaussian_base_feat here
# ! predict gaussians residuals
gaussian_residual_pre_activate = self.gaussian_residual_pred(
new_gaussian_embed)
# ! add back. how to deal with new rotations? check the range first.
# scaling and rotation.
gaussian_base_pre_activate[split_mask][
4:7] -= 1 # reduce scale for those points
gaussian_base_pre_activate_repeat = gaussian_base_pre_activate.repeat_interleave(
self.f, dim=1)
# new scaling
# ! pre-activate scaling value, shall be negative? since more values are 0.1 before softplus.
# TODO wrong here, shall get new scaling before repeat
gaussians = gaussian_residual_pre_activate + gaussian_base_pre_activate_repeat # learn the residual
new_gaussians_pos = new_xyz + self.residual_offset_act(
gaussians[..., :3])
return gaussians, new_gaussians_pos, latent_from_vit, new_gaussian_embed # return positions independently
class GS_Adaptive_Read_Write_CA_adaptive(GS_Adaptive_Read_Write_CA):
def __init__(self,
query_dim,
context_dim,
mlp_ratio,
vit_heads,
f=4,
heads=8,
dim_head=64,
dropout=0,
depth=2,
vit_blk=DiTBlock2) -> None:
super().__init__(query_dim, context_dim, mlp_ratio, vit_heads, f,
heads, dim_head, dropout, depth, vit_blk)
# assert self.f == 6
def forward(self, gaussians_base, gaussian_base_pre_activate,
gaussian_base_feat, latent_from_vit, vae_latent, xyz_embed_fn):
# gaussians_base: xyz_base after activations and deform offset
# xyz_base: original features (before activations)
# ========= START read CA ========
latent_from_vit = self.read_ca(latent_from_vit,
gaussian_base_feat) # z_i -> z_(i+1)
for blk_idx, block in enumerate(self.point_infinity_blocks):
latent_from_vit = block(latent_from_vit,
vae_latent) # vae_latent: c
# ========= END read CA ========
# ! use point embedder, or other features?
# base_gaussian_xyz_embed = xyz_embed_fn(gaussians_base[..., :3])
# x = self.densify_and_split(gaussians_base, base_gaussian_xyz_embed)
# ! densify
B, N = gaussians_base.shape[:2] # gaussians upsample factor
# n_init_points = self.get_xyz.shape[0]
pos, opacity, scaling, rotation = gaussians_base[
..., 0:3], gaussians_base[..., 3:4], gaussians_base[
..., 4:7], gaussians_base[..., 7:11]
# ! filter clone/densify based on scaling range
split_mask = scaling.max(
dim=-1
)[0] > self.scene_extent * self.percent_dense # shape: B 4096
# clone_mask = ~split_mask
# stds = scaling.repeat_interleave(self.f, dim=1) # B 13824 3
# stds = scaling.unsqueeze(1).repeat_interleave(self.f, dim=1) # B 6 13824 3
stds = scaling # B 13824 3
# TODO, in mat form. axis aligned creation.
samples = torch.zeros(B, N, 3, 3).to(stds.device)
samples[..., 0, 0] = stds[..., 0]
samples[..., 1, 1] = stds[..., 1]
samples[..., 2, 2] = stds[..., 2]
eye_mat = torch.cat([torch.eye(3), -torch.eye(3)],
0) # 6 * 3, to put gaussians along the axis
eye_mat = eye_mat.reshape(1, 1, 6, 3).repeat(B, N, 1,
1).to(stds.device)
samples = (eye_mat @ samples).squeeze(-1)
# st()
# means = torch.zeros_like(stds)
# samples = torch.normal(mean=means, std=stds) # B f*N 3
rots = rearrange(build_rotation(
rearrange(rotation, 'B N ... -> (B N) ...')),
'(B N) ... -> B N ...',
B=B,
N=N)
rots = rots.unsqueeze(2).repeat_interleave(self.f, dim=2) # B f*N 3 3
# torch.bmm only supports ndim=3 Tensor
# new_xyz = torch.matmul(rots, samples.unsqueeze(-1)).squeeze(-1) + pos.repeat_interleave(self.f, dim=1)
# st()
# new_xyz = torch.matmul(rots, samples.unsqueeze(-1)).squeeze(-1) + pos.repeat_interleave(self.f, dim=1)
new_xyz = (rots @ samples.unsqueeze(-1)).squeeze(-1) + pos.unsqueeze(
2).repeat_interleave(self.f, dim=2) # B N 6 3
new_xyz = rearrange(new_xyz, 'b n f c -> b (n f) c')
# ! not considering rotation here
# new_xyz = samples + pos.repeat_interleave(
# self.f, dim=1) # ! no rotation for now
# new_xyz: B f*N 3
# ! new points to features
new_xyz_embed = xyz_embed_fn(new_xyz)
new_gaussian_embed = self.write_ca(
new_xyz_embed, latent_from_vit
) # ! use z_(i+1), rather than gaussian_base_feat here
# ! predict gaussians residuals
gaussian_residual_pre_activate = self.gaussian_residual_pred(
new_gaussian_embed)
# ! add back. how to deal with new rotations? check the range first.
# scaling and rotation.
# gaussian_base_pre_activate[split_mask][
# 4:7] -= 1 # reduce scale for those points
gaussian_base_pre_activate_repeat = gaussian_base_pre_activate.repeat_interleave(
self.f, dim=1)
# new scaling
# ! pre-activate scaling value, shall be negative? since more values are 0.1 before softplus.
# TODO wrong here, shall get new scaling before repeat
gaussians = gaussian_residual_pre_activate + gaussian_base_pre_activate_repeat # learn the residual
# new_gaussians_pos = new_xyz + self.residual_offset_act(
# gaussians[..., :3])
return gaussians, new_xyz, latent_from_vit, new_gaussian_embed # return positions independently
class GS_Adaptive_Read_Write_CA_adaptive_f14_prepend(
GS_Adaptive_Read_Write_CA_adaptive):
def __init__(self,
query_dim,
context_dim,
mlp_ratio,
vit_heads,
f=4,
heads=8,
dim_head=64,
dropout=0,
depth=2,
vit_blk=DiTBlock2,
no_flash_op=False,) -> None:
super().__init__(query_dim, context_dim, mlp_ratio, vit_heads, f,
heads, dim_head, dropout, depth, vit_blk)
# corner_mat = torch.empty(8,3)
# counter = 0
# for i in range(-1,3,2):
# for j in range(-1,3,2):
# for k in range(-1,3,2):
# corner_mat[counter] = torch.Tensor([i,j,k])
# counter += 1
# self.corner_mat=corner_mat.contiguous().to(dist_util.dev()).reshape(1,1,8,3)
del self.read_ca, self.write_ca
del self.point_infinity_blocks
# ? why not saved to checkpoint
# self.latent_embedding = nn.Parameter(torch.randn(1, f, query_dim)).to(
# dist_util.dev())
# ! not .cuda() here
self.latent_embedding = nn.Parameter(torch.randn(1, f, query_dim),
requires_grad=True)
self.transformer = SRT_TX(
context_dim, # 12 * 64 = 768
depth=depth,
heads=context_dim // 64, # vit-b default.
mlp_dim=4 * context_dim, # 1536 by default
no_flash_op=no_flash_op,
)
# self.offset_act = lambda x: torch.tanh(x) * (self.scene_range[
# 1]) * 0.5 # regularize small offsets
def forward(self, gaussians_base, gaussian_base_pre_activate,
gaussian_base_feat, latent_from_vit, vae_latent, xyz_embed_fn,
offset_act):
# gaussians_base: xyz_base after activations and deform offset
# xyz_base: original features (before activations)
# ========= START read CA ========
# latent_from_vit = self.read_ca(latent_from_vit,
# gaussian_base_feat) # z_i -> z_(i+1)
# for blk_idx, block in enumerate(self.point_infinity_blocks):
# latent_from_vit = block(latent_from_vit,
# vae_latent) # vae_latent: c
# ========= END read CA ========
# ! use point embedder, or other features?
# base_gaussian_xyz_embed = xyz_embed_fn(gaussians_base[..., :3])
# x = self.densify_and_split(gaussians_base, base_gaussian_xyz_embed)
# ! densify
B, N = gaussians_base.shape[:2] # gaussians upsample factor
# n_init_points = self.get_xyz.shape[0]
pos, opacity, scaling, rotation = gaussians_base[
..., 0:3], gaussians_base[..., 3:4], gaussians_base[
..., 4:7], gaussians_base[..., 7:11]
# ! filter clone/densify based on scaling range
"""
# split_mask = scaling.max(
# dim=-1
# )[0] > self.scene_extent * self.percent_dense # shape: B 4096
stds = scaling # B 13824 3
# TODO, in mat form. axis aligned creation.
samples = torch.zeros(B, N, 3, 3).to(stds.device)
samples[..., 0,0] = stds[..., 0]
samples[..., 1,1] = stds[..., 1]
samples[..., 2,2] = stds[..., 2]
eye_mat = torch.cat([torch.eye(3), -torch.eye(3)], 0) # 6 * 3, to put gaussians along the axis
eye_mat = eye_mat.reshape(1,1,6,3).repeat(B, N, 1, 1).to(stds.device)
samples = (eye_mat @ samples).squeeze(-1) # B N 6 3
# ! create corner
samples_corner = stds.clone().unsqueeze(-2).repeat(1,1,8,1) # B N 8 3
# ! optimize with matmul, register to self
samples_corner = torch.mul(samples_corner,self.corner_mat)
samples = torch.cat([samples, samples_corner], -2)
rots = rearrange(build_rotation(rearrange(rotation, 'B N ... -> (B N) ...')), '(B N) ... -> B N ...', B=B, N=N)
rots = rots.unsqueeze(2).repeat_interleave(self.f, dim=2) # B f*N 3 3
new_xyz = (rots @ samples.unsqueeze(-1)).squeeze(-1) + pos.unsqueeze(2).repeat_interleave(self.f, dim=2) # B N 6 3
new_xyz = rearrange(new_xyz, 'b n f c -> b (n f) c')
# ! new points to features
new_xyz_embed = xyz_embed_fn(new_xyz)
new_gaussian_embed = self.write_ca(
new_xyz_embed, latent_from_vit
) # ! use z_(i+1), rather than gaussian_base_feat here
"""
# ! [global_emb, local_emb, learnable_query_emb] self attention -> fetch last K tokens as the learned query -> add to base
# ! query from local point emb
global_local_query_emb = torch.cat(
[
# rearrange(latent_from_vit.unsqueeze(1).expand(-1,N,-1,-1), 'B N L C -> (B N) L C'), # 8, 768, 1024. expand() returns a new view.
rearrange(gaussian_base_feat,
'B N C -> (B N) 1 C'), # 8, 2304, 1024 -> 8*2304 1 C
self.latent_embedding.repeat(B * N, 1,
1) # 1, 14, 1024 -> B*N 14 1024
],
dim=1) # OOM if prepend global feat
global_local_query_emb = self.transformer(
global_local_query_emb) # torch.Size([18432, 15, 1024])
# st() # do self attention
# ! query from global shape emb
# new_gaussian_embed = self.write_ca(
# global_local_query_emb,
# rearrange(latent_from_vit.unsqueeze(1).expand(-1,N,-1,-1), 'B N L C -> (B N) L C'),
# ) # ! use z_(i+1), rather than gaussian_base_feat here
# ! predict gaussians residuals
gaussian_residual_pre_activate = self.gaussian_residual_pred(
global_local_query_emb[:, 1:, :])
gaussian_residual_pre_activate = rearrange(
gaussian_residual_pre_activate, '(B N) L C -> B N L C', B=B,
N=N) # B 2304 14 C
# TODO here
# ? new_xyz from where
offsets = offset_act(gaussian_residual_pre_activate[..., 0:3])
new_xyz = offsets + pos.unsqueeze(2).repeat_interleave(
self.f, dim=2) # B N F 3
new_xyz = rearrange(new_xyz, 'b n f c -> b (n f) c')
gaussian_base_pre_activate_repeat = gaussian_base_pre_activate.unsqueeze(
-2).expand(-1, -1, self.f, -1) # avoid new memory allocation
gaussians = rearrange(gaussian_residual_pre_activate +
gaussian_base_pre_activate_repeat,
'B N F C -> B (N F) C',
B=B,
N=N) # learn the residual in the feature space
# return gaussians, new_xyz, latent_from_vit, new_gaussian_embed # return positions independently
# return gaussians, latent_from_vit, new_gaussian_embed # return positions independently
return gaussians, new_xyz
class GS_Adaptive_Read_Write_CA_adaptive_2dgs(
GS_Adaptive_Read_Write_CA_adaptive_f14_prepend):
def __init__(self,
query_dim,
context_dim,
mlp_ratio,
vit_heads,
f=16,
heads=8,
dim_head=64,
dropout=0,
depth=2,
vit_blk=DiTBlock2,
no_flash_op=False,
cross_attention=False,) -> None:
super().__init__(query_dim, context_dim, mlp_ratio, vit_heads, f,
heads, dim_head, dropout, depth, vit_blk, no_flash_op)
# del self.gaussian_residual_pred # will use base one
self.cross_attention = cross_attention
if cross_attention: # since much efficient than self attention, linear complexity
# del self.transformer
self.sr_ca = CrossAttention(query_dim, context_dim, # xformers fails large batch size: https://github.com/facebookresearch/xformers/issues/845
heads, dim_head, dropout,
no_flash_op=no_flash_op)
# predict residual over base (features)
self.gaussian_residual_pred = PreNorm( # add prenorm since using pre-norm TX as the sr module
query_dim, nn.Linear(query_dim, 13, bias=True))
# init as full zero, since predicting residual here
nn.init.constant_(self.gaussian_residual_pred.fn.weight, 0)
nn.init.constant_(self.gaussian_residual_pred.fn.bias, 0)
def forward(self,
latent_from_vit,
base_gaussians,
skip_weight,
offset_act,
gs_pred_fn,
gs_act_fn,
gaussian_base_pre_activate=None):
B, N, C = latent_from_vit.shape # e.g., B 768 768
if not self.cross_attention:
# ! query from local point emb
global_local_query_emb = torch.cat(
[
rearrange(latent_from_vit,
'B N C -> (B N) 1 C'), # 8, 2304, 1024 -> 8*2304 1 C
self.latent_embedding.repeat(B * N, 1, 1).to(
latent_from_vit) # 1, 14, 1024 -> B*N 14 1024
],
dim=1) # OOM if prepend global feat
global_local_query_emb = self.transformer(
global_local_query_emb) # torch.Size([18432, 15, 1024])
# ! add residuals to the base features
global_local_query_emb = rearrange(global_local_query_emb[:, 1:],
'(B N) L C -> B N L C',
B=B,
N=N) # B N C f
else:
# st()
# for xformers debug
# global_local_query_emb = self.sr_ca( self.latent_embedding.repeat(B, 1, 1).to( latent_from_vit).contiguous(), latent_from_vit[:, 0:1, :],)
# st()
# self.sr_ca( self.latent_embedding.repeat(B * N, 1, 1).to(latent_from_vit)[:8000], rearrange(latent_from_vit, 'B N C -> (B N) 1 C')[:8000],).shape
global_local_query_emb = self.sr_ca( self.latent_embedding.repeat(B * N, 1, 1).to(latent_from_vit), rearrange(latent_from_vit, 'B N C -> (B N) 1 C'),)
global_local_query_emb = self.transformer(
global_local_query_emb) # torch.Size([18432, 15, 1024])
# ! add residuals to the base features
global_local_query_emb = rearrange(global_local_query_emb,
'(B N) L C -> B N L C',
B=B,
N=N) # B N C f
# * predict residual features
gaussian_residual_pre_activate = self.gaussian_residual_pred(
global_local_query_emb)
# ! directly add xyz offsets
offsets = offset_act(gaussian_residual_pre_activate[..., :3])
gaussians_upsampled_pos = offsets + einops.repeat(
base_gaussians[..., :3], 'B N C -> B N F C',
F=self.f) # ! reasonable init
# ! add residual features
gaussian_residual_pre_activate = gaussian_residual_pre_activate + einops.repeat(
gaussian_base_pre_activate, 'B N C -> B N F C', F=self.f)
gaussians_upsampled = gs_act_fn(pos=gaussians_upsampled_pos,
x=gaussian_residual_pre_activate)
gaussians_upsampled = rearrange(gaussians_upsampled,
'B N F C -> B (N F) C')
return gaussians_upsampled, (rearrange(
gaussian_residual_pre_activate, 'B N F C -> B (N F) C'
), rearrange(
global_local_query_emb, 'B N F C -> B (N F) C'
))
class ViTTriplaneDecomposed(nn.Module):
def __init__(
self,
vit_decoder,
triplane_decoder: Triplane,
cls_token=False,
decoder_pred_size=-1,
unpatchify_out_chans=-1,
sr_ratio=2,
) -> None:
super().__init__()
self.superresolution = None
self.decomposed_IN = False
self.decoder_pred_3d = None
self.transformer_3D_blk = None
self.logvar = None
self.cls_token = cls_token
self.vit_decoder = vit_decoder
self.triplane_decoder = triplane_decoder
# triplane_sr_ratio = self.triplane_decoder.triplane_size / self.vit_decoder.img_size
# self.decoder_pred = nn.Linear(self.vit_decoder.embed_dim,
# self.vit_decoder.patch_size**2 *
# self.triplane_decoder.out_chans,
# bias=True) # decoder to pat
# self.patch_size = self.vit_decoder.patch_embed.patch_size
self.patch_size = 14 # TODO, hard coded here
if isinstance(self.patch_size, tuple): # dino-v2
self.patch_size = self.patch_size[0]
# self.img_size = self.vit_decoder.patch_embed.img_size
self.img_size = None # TODO, hard coded
if decoder_pred_size == -1:
decoder_pred_size = self.patch_size**2 * self.triplane_decoder.out_chans
if unpatchify_out_chans == -1:
self.unpatchify_out_chans = self.triplane_decoder.out_chans
else:
self.unpatchify_out_chans = unpatchify_out_chans
self.decoder_pred = nn.Linear(
self.vit_decoder.embed_dim,
decoder_pred_size,
# self.patch_size**2 *
# self.triplane_decoder.out_chans,
bias=True) # decoder to pat
# st()
def triplane_decode(self, latent, c):
ret_dict = self.triplane_decoder(latent, c) # triplane latent -> imgs
ret_dict.update({'latent': latent})
return ret_dict
def triplane_renderer(self, latent, coordinates, directions):
planes = latent.view(len(latent), 3,
self.triplane_decoder.decoder_in_chans,
latent.shape[-2],
latent.shape[-1]) # BS 96 256 256
ret_dict = self.triplane_decoder.renderer.run_model(
planes, self.triplane_decoder.decoder, coordinates, directions,
self.triplane_decoder.rendering_kwargs) # triplane latent -> imgs
# ret_dict.update({'latent': latent})
return ret_dict
# * increase encoded encoded latent dim to match decoder
def forward_vit_decoder(self, x, img_size=None):
# latent: (N, L, C) from DINO/CLIP ViT encoder
# * also dino ViT
# add positional encoding to each token
if img_size is None:
img_size = self.img_size
if self.cls_token:
x = x + self.vit_decoder.interpolate_pos_encoding(
x, img_size, img_size)[:, :] # B, L, C
else:
x = x + self.vit_decoder.interpolate_pos_encoding(
x, img_size, img_size)[:, 1:] # B, L, C
for blk in self.vit_decoder.blocks:
x = blk(x)
x = self.vit_decoder.norm(x)
return x
def unpatchify(self, x, p=None, unpatchify_out_chans=None):
"""
x: (N, L, patch_size**2 * self.out_chans)
imgs: (N, self.out_chans, H, W)
"""
# st()
if unpatchify_out_chans is None:
unpatchify_out_chans = self.unpatchify_out_chans
# p = self.vit_decoder.patch_size
if self.cls_token: # TODO, how to better use cls token
x = x[:, 1:]
if p is None: # assign upsample patch size
p = self.patch_size
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, unpatchify_out_chans))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], unpatchify_out_chans, h * p,
h * p))
return imgs
def forward(self, latent, c, img_size):
latent = self.forward_vit_decoder(latent, img_size) # pred_vit_latent
if self.cls_token:
# latent, cls_token = latent[:, 1:], latent[:, :1]
cls_token = latent[:, :1]
else:
cls_token = None
# ViT decoder projection, from MAE
latent = self.decoder_pred(
latent) # pred_vit_latent -> patch or original size
# st()
latent = self.unpatchify(
latent) # spatial_vit_latent, B, C, H, W (B, 96, 256,256)
# TODO 2D convolutions -> Triplane
# * triplane rendering
# ret_dict = self.forward_triplane_decoder(latent,
# c) # triplane latent -> imgs
ret_dict = self.triplane_decoder(planes=latent, c=c)
ret_dict.update({'latent': latent, 'cls_token': cls_token})
return ret_dict
# merged above class into a single class
class vae_3d(nn.Module):
def __init__(
self,
vit_decoder: VisionTransformer,
triplane_decoder: Triplane_fg_bg_plane,
cls_token,
ldm_z_channels,
ldm_embed_dim,
plane_n=1,
vae_dit_token_size=16,
**kwargs) -> None:
super().__init__()
self.reparameterization_soft_clamp = True # some instability in training VAE
# st()
self.plane_n = plane_n
self.cls_token = cls_token
self.vit_decoder = vit_decoder
self.triplane_decoder = triplane_decoder
self.patch_size = 14 # TODO, hard coded here
if isinstance(self.patch_size, tuple): # dino-v2
self.patch_size = self.patch_size[0]
self.img_size = None # TODO, hard coded
self.ldm_z_channels = ldm_z_channels
self.ldm_embed_dim = ldm_embed_dim
self.vae_p = 4 # resolution = 4 * 16
self.token_size = vae_dit_token_size # use dino-v2 dim tradition here
self.vae_res = self.vae_p * self.token_size
self.superresolution = nn.ModuleDict({}) # put all the stuffs here
self.embed_dim = vit_decoder.embed_dim
# placeholder for compat issue
self.decoder_pred = None
self.decoder_pred_3d = None
self.transformer_3D_blk = None
self.logvar = None
self.register_buffer('w_avg', torch.zeros([512]))
def init_weights(self):
# ! init (learnable) PE for DiT
self.vit_decoder.pos_embed = nn.Parameter(
torch.zeros(1, self.vit_decoder.embed_dim,
self.vit_decoder.embed_dim),
requires_grad=True) # token_size = embed_size by default.
trunc_normal_(self.vit_decoder.pos_embed, std=.02)
# the base class
class pcd_structured_latent_space_vae_decoder(vae_3d):
def __init__(
self,
vit_decoder: VisionTransformer,
triplane_decoder: Triplane_fg_bg_plane,
cls_token,
**kwargs) -> None:
super().__init__(vit_decoder, triplane_decoder, cls_token, **kwargs)
# from splatting_dit_v4_PI_V1_trilatent_sphere
self.D_roll_out_input = False
# ! renderer
self.gs = triplane_decoder # compat
self.rendering_kwargs = self.gs.rendering_kwargs
self.scene_range = [
self.rendering_kwargs['sampler_bbox_min'],
self.rendering_kwargs['sampler_bbox_max']
]
# hyper parameters
self.skip_weight = torch.tensor(0.1).to(dist_util.dev())
self.offset_act = lambda x: torch.tanh(x) * (self.scene_range[
1]) * 0.5 # regularize small offsets
self.vit_decoder.pos_embed = nn.Parameter(
torch.zeros(1,
self.plane_n * (self.token_size**2 + self.cls_token),
vit_decoder.embed_dim))
self.init_weights() # re-init weights after re-writing token_size
self.output_size = {
'gaussians_base': 128,
}
# activations
self.rot_act = lambda x: F.normalize(x, dim=-1) # as fixed in lgm
self.scene_extent = self.rendering_kwargs['sampler_bbox_max'] * 0.01
scaling_factor = (self.scene_extent /
F.softplus(torch.tensor(0.0))).to(dist_util.dev())
self.scale_act = lambda x: F.softplus(
x
) * scaling_factor # make sure F.softplus(0) is the average scale size
self.rgb_act = lambda x: 0.5 * torch.tanh(
x) + 0.5 # NOTE: may use sigmoid if train again
self.pos_act = lambda x: x.clamp(-0.45, 0.45)
self.opacity_act = lambda x: torch.sigmoid(x)
self.superresolution.update(
dict(
conv_sr=surfel_prediction(query_dim=vit_decoder.embed_dim),
quant_conv=Mlp(in_features=2 * self.ldm_z_channels,
out_features=2 * self.ldm_embed_dim,
act_layer=approx_gelu,
drop=0),
post_quant_conv=Mlp(in_features=self.ldm_z_channels,
out_features=vit_decoder.embed_dim,
act_layer=approx_gelu,
drop=0),
ldm_upsample=nn.Identity(),
xyz_pos_embed=nn.Identity(),
))
# for gs prediction
self.superresolution.update( # f=14 here
dict(
ada_CA_f4_1=GS_Adaptive_Read_Write_CA_adaptive_2dgs(
self.embed_dim,
vit_decoder.embed_dim,
vit_heads=vit_decoder.num_heads,
mlp_ratio=vit_decoder.mlp_ratio,
# depth=vit_decoder.depth // 6,
depth=vit_decoder.depth // 6 if vit_decoder.depth==12 else 2,
# f=16, #
f=8, #
heads=8), # write
))
def vae_reparameterization(self, latent, sample_posterior):
# latent: B 24 32 32
# assert self.vae_p > 1
# ! do VAE here
posterior = self.vae_encode(latent) # B self.ldm_z_channels 3 L
assert sample_posterior
if sample_posterior:
# torch.manual_seed(0)
# np.random.seed(0)
kl_latent = posterior.sample()
else:
kl_latent = posterior.mode() # B C 3 L
ret_dict = dict(
latent_normalized=rearrange(kl_latent, 'B C L -> B L C'),
posterior=posterior,
query_pcd_xyz=latent['query_pcd_xyz'],
)
return ret_dict
# from pcd_structured_latent_space_lion_learnoffset_surfel_sr_noptVAE.vae_encode
def vae_encode(self, h):
# * smooth convolution before triplane
# B, L, C = h.shape #
h, query_pcd_xyz = h['h'], h['query_pcd_xyz']
moments = self.superresolution['quant_conv'](
h) # Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), groups=3)
moments = rearrange(moments,
'B L C -> B C L') # for sd vae code compat
posterior = DiagonalGaussianDistribution(
moments, soft_clamp=self.reparameterization_soft_clamp)
return posterior
# from pcd_structured_latent_space_lion_learnoffset_surfel_novaePT._get_base_gaussians
def _get_base_gaussians(self, ret_after_decoder, c=None):
x = ret_after_decoder['gaussian_base_pre_activate']
B, N, C = x.shape # B C D H W, 14-dim voxel features
assert C == 13 # 2dgs
offsets = self.offset_act(x[..., 0:3]) # ! model prediction
# st()
# vae_sampled_xyz = ret_after_decoder['latent_normalized'][..., :3] # B L C
vae_sampled_xyz = ret_after_decoder['query_pcd_xyz'].to(
x.dtype) # ! directly use fps pcd as "anchor points"
pos = offsets * self.skip_weight + vae_sampled_xyz # ! reasonable init
opacity = self.opacity_act(x[..., 3:4])
scale = self.scale_act(x[..., 4:6])
rotation = self.rot_act(x[..., 6:10])
rgbs = self.rgb_act(x[..., 10:])
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs],
dim=-1) # [B, N, 14]
return gaussians
# from pcd_structured_latent_space
def vit_decode_backbone(self, latent, img_size):
# assert x.ndim == 3 # N L C
if isinstance(latent, dict):
latent = latent['latent_normalized'] # B, C*3, H, W
latent = self.superresolution['post_quant_conv'](
latent) # to later dit embed dim
# ! directly feed to vit_decoder
return {
'latent': latent,
'latent_from_vit': self.forward_vit_decoder(latent, img_size)
} # pred_vit_latent
# from pcd_structured_latent_space_lion_learnoffset_surfel_sr
def _gaussian_pred_activations(self, pos, x):
# if pos is None:
opacity = self.opacity_act(x[..., 3:4])
scale = self.scale_act(x[..., 4:6])
rotation = self.rot_act(x[..., 6:10])
rgbs = self.rgb_act(x[..., 10:])
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs],
dim=-1) # [B, N, 14]
return gaussians.float()
# from pcd_structured_latent_space_lion_learnoffset_surfel_sr
def vis_gaussian(self, gaussians, file_name_base):
# gaussians = ret_after_decoder['gaussians']
# gaussians = ret_after_decoder['latent_after_vit']['gaussians_base']
B = gaussians.shape[0]
pos, opacity, scale, rotation, rgbs = gaussians[..., 0:3], gaussians[
..., 3:4], gaussians[..., 4:6], gaussians[...,
6:10], gaussians[...,
10:13]
file_path = Path(logger.get_dir())
for b in range(B):
file_name = f'{file_name_base}-{b}'
np.save(file_path / f'{file_name}_opacity.npy',
opacity[b].float().detach().cpu().numpy())
np.save(file_path / f'{file_name}_scale.npy',
scale[b].float().detach().cpu().numpy())
np.save(file_path / f'{file_name}_rotation.npy',
rotation[b].float().detach().cpu().numpy())
pcu.save_mesh_vc(str(file_path / f'{file_name}.ply'),
pos[b].float().detach().cpu().numpy(),
rgbs[b].float().detach().cpu().numpy())
def vit_decode_postprocess(self, latent_from_vit, ret_dict: dict, return_upsampled_residual=False):
# from ViT_decode_backbone()
# latent_from_vit = latent_from_vit['latent_from_vit']
# vae_sampled_xyz = ret_dict['query_pcd_xyz'].to(latent_from_vit.dtype) # ! directly use fps pcd as "anchor points"
gaussian_base_pre_activate = self.superresolution['conv_sr'](
latent_from_vit['latent_from_vit']) # B 14 H W
gaussians_base = self._get_base_gaussians(
{
# 'latent_from_vit': latent_from_vit, # latent (vae latent), latent_from_vit (dit)
# 'ret_dict': ret_dict,
**ret_dict,
'gaussian_base_pre_activate':
gaussian_base_pre_activate,
}, )
gaussians_upsampled, (gaussian_upsampled_residual_pre_activate, upsampled_global_local_query_emb) = self.superresolution['ada_CA_f4_1'](
latent_from_vit['latent_from_vit'],
gaussians_base,
skip_weight=self.skip_weight,
gs_pred_fn=self.superresolution['conv_sr'],
gs_act_fn=self._gaussian_pred_activations,
offset_act=self.offset_act,
gaussian_base_pre_activate=gaussian_base_pre_activate)
ret_dict.update({
'gaussians_upsampled': gaussians_upsampled,
'gaussians_base': gaussians_base
}) #
if return_upsampled_residual:
return ret_dict, (gaussian_upsampled_residual_pre_activate, upsampled_global_local_query_emb)
else:
return ret_dict
def vit_decode(self, latent, img_size, sample_posterior=True, c=None):
ret_dict = self.vae_reparameterization(latent, sample_posterior)
latent = self.vit_decode_backbone(ret_dict, img_size)
ret_after_decoder = self.vit_decode_postprocess(latent, ret_dict)
return self.forward_gaussians(ret_after_decoder, c=c)
# from pcd_structured_latent_space_lion_learnoffset_surfel_novaePT_sr.forward_gaussians
def forward_gaussians(self, ret_after_decoder, c=None):
# ! currently, only using upsampled gaussians for training.
# if True:
if False:
ret_after_decoder['gaussians'] = torch.cat([
ret_after_decoder['gaussians_base'],
ret_after_decoder['gaussians_upsampled'],
],
dim=1)
else: # only adopt SR
# ! random drop out requires
ret_after_decoder['gaussians'] = ret_after_decoder[
'gaussians_upsampled']
# ret_after_decoder['gaussians'] = ret_after_decoder['gaussians_base']
pass # directly use base. vis first.
ret_after_decoder.update({
'gaussians': ret_after_decoder['gaussians'],
'pos': ret_after_decoder['gaussians'][..., :3],
'gaussians_base_opa': ret_after_decoder['gaussians_base'][..., 3:4]
})
# st()
# self.vis_gaussian(ret_after_decoder['gaussians'], 'sr-8')
# self.vis_gaussian(ret_after_decoder['gaussians_base'], 'sr-8-base')
# pcu.save_mesh_v(f'{Path(logger.get_dir())}/anchor-fps-8.ply',ret_after_decoder['query_pcd_xyz'][0].float().detach().cpu().numpy())
# st()
# ! render at L:8414 triplane_decode()
return ret_after_decoder
def forward_vit_decoder(self, x, img_size=None):
return self.vit_decoder(x)
# from pcd_structured_latent_space_lion_learnoffset_surfel_novaePT_sr_cascade.triplane_decode
def triplane_decode(self,
ret_after_gaussian_forward,
c,
bg_color=None,
render_all_scale=False,
**kwargs):
# ! render multi-res img with different gaussians
def render_gs(gaussians, c_data, output_size):
results = self.gs.render(
gaussians, # type: ignore
c_data['cam_view'],
c_data['cam_view_proj'],
c_data['cam_pos'],
tanfov=c_data['tanfov'],
bg_color=bg_color,
output_size=output_size,
)
results['image_raw'] = results[
'image'] * 2 - 1 # [0,1] -> [-1,1], match tradition
results['image_depth'] = results['depth']
results['image_mask'] = results['alpha']
return results
cascade_splatting_results = {}
# for gaussians_key in ('gaussians_base', 'gaussians_upsampled'):
all_keys_to_render = list(self.output_size.keys())
if self.rand_base_render and not render_all_scale:
keys_to_render = [random.choice(all_keys_to_render[:-1])] + [all_keys_to_render[-1]]
else:
keys_to_render = all_keys_to_render
for gaussians_key in keys_to_render:
cascade_splatting_results[gaussians_key] = render_gs(ret_after_gaussian_forward[gaussians_key], c, self.output_size[gaussians_key])
return cascade_splatting_results
class pcd_structured_latent_space_vae_decoder_cascaded(pcd_structured_latent_space_vae_decoder):
# for 2dgs
def __init__(
self,
vit_decoder: VisionTransformer,
triplane_decoder: Triplane_fg_bg_plane,
cls_token,
**kwargs) -> None:
super().__init__(vit_decoder, triplane_decoder, cls_token, **kwargs)
self.output_size.update(
{
'gaussians_upsampled': 256,
'gaussians_upsampled_2': 384,
'gaussians_upsampled_3': 512,
}
)
self.rand_base_render = True
# further x8 up-sampling.
self.superresolution.update(
dict(
ada_CA_f4_2=GS_Adaptive_Read_Write_CA_adaptive_2dgs(
self.embed_dim,
vit_decoder.embed_dim,
vit_heads=vit_decoder.num_heads,
mlp_ratio=vit_decoder.mlp_ratio,
# depth=vit_decoder.depth // 6,
depth=1,
f=4, #
heads=8,
no_flash_op=True, # fails when bs>1
cross_attention=False), # write
ada_CA_f4_3=GS_Adaptive_Read_Write_CA_adaptive_2dgs(
self.embed_dim,
vit_decoder.embed_dim,
vit_heads=vit_decoder.num_heads,
mlp_ratio=vit_decoder.mlp_ratio,
# depth=vit_decoder.depth // 6,
depth=1,
f=3, #
heads=8,
no_flash_op=True,
cross_attention=False), # write
),
)
def vit_decode_postprocess(self, latent_from_vit, ret_dict: dict):
# further x8 using upper class
# TODO, merge this into ln3diff open sourced code.
ret_dict, (gaussian_upsampled_residual_pre_activate, upsampled_global_local_query_emb) = super().vit_decode_postprocess(latent_from_vit, ret_dict, return_upsampled_residual=True)
gaussians_upsampled_2, (gaussian_upsampled_residual_pre_activate_2, upsampled_global_local_query_emb_2) = self.superresolution['ada_CA_f4_2'](
upsampled_global_local_query_emb,
ret_dict['gaussians_upsampled'],
skip_weight=self.skip_weight,
gs_pred_fn=self.superresolution['conv_sr'],
gs_act_fn=self._gaussian_pred_activations,
offset_act=self.offset_act,
gaussian_base_pre_activate=gaussian_upsampled_residual_pre_activate)
gaussians_upsampled_3, _ = self.superresolution['ada_CA_f4_3'](
upsampled_global_local_query_emb_2,
gaussians_upsampled_2,
skip_weight=self.skip_weight,
gs_pred_fn=self.superresolution['conv_sr'],
gs_act_fn=self._gaussian_pred_activations,
offset_act=self.offset_act,
gaussian_base_pre_activate=gaussian_upsampled_residual_pre_activate_2)
ret_dict.update({
'gaussians_upsampled_2': gaussians_upsampled_2,
'gaussians_upsampled_3': gaussians_upsampled_3,
})
return ret_dict
|