File size: 1,196 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numbers
from typing import Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from pdb import set_trace as st


class RMSNorm(nn.Module):
    def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True):
        super().__init__()

        self.eps = eps

        if isinstance(dim, numbers.Integral):
            dim = (dim,)

        self.dim = torch.Size(dim)

        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.weight = None

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)

        if self.weight is not None:
            # convert into half-precision if necessary
            if self.weight.dtype in [torch.float16, torch.bfloat16]:
                hidden_states = hidden_states.to(self.weight.dtype)
            hidden_states = hidden_states * self.weight
        else:
            hidden_states = hidden_states.to(input_dtype)

        return hidden_states.to(input_dtype)