File size: 13,100 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# https://raw.githubusercontent.com/3dlg-hcvc/omages/refs/heads/main/src/evals/fpd_eval.py
import os
import random
from tqdm import tqdm
import glob
from pdb import set_trace as st
import trimesh
import sys
import numpy as np
import scipy # should be version 1.11.1
import torch

import argparse
# from point_e.evals.feature_extractor import PointNetClassifier, get_torch_devices
from feature_extractor import PointNetClassifier, get_torch_devices
from point_e.evals.fid_is import compute_statistics
from point_e.evals.fid_is import compute_inception_score
from point_e.evals.npz_stream import NpzStreamer    

import numpy as np

def rotation_matrix(axis, angle):
    """
    Returns a rotation matrix for a given axis and angle in radians.
    :param axis: str, the axis to rotate around ('x', 'y', or 'z')
    :param angle: float, the rotation angle in radians
    :return: 3x3 rotation matrix
    """
    if axis == 'x':
        return np.array([[1, 0, 0],
                         [0, np.cos(angle), -np.sin(angle)],
                         [0, np.sin(angle), np.cos(angle)]])
    elif axis == 'y':
        return np.array([[np.cos(angle), 0, np.sin(angle)],
                         [0, 1, 0],
                         [-np.sin(angle), 0, np.cos(angle)]])
    elif axis == 'z':
        return np.array([[np.cos(angle), -np.sin(angle), 0],
                         [np.sin(angle), np.cos(angle), 0],
                         [0, 0, 1]])
    else:
        raise ValueError("Axis must be 'x', 'y', or 'z'.")


def rotate_point_cloud(point_cloud, rotations):
    """
    Rotates a point cloud along specified axes by the given angles.
    :param point_cloud: Nx3 numpy array of points
    :param rotations: list of tuples [(axis, angle_in_degrees), ...]
                      Example: [('x', 90), ('y', 45)] for composite rotations
    :return: Rotated point cloud as Nx3 numpy array
    """
    rotated_cloud = point_cloud.copy()
    for axis, angle in rotations:
        angle_rad = np.radians(angle)  # Convert degrees to radians
        R = rotation_matrix(axis, angle_rad)
        rotated_cloud = np.dot(rotated_cloud, R.T)  # Apply rotation matrix
    
    return rotated_cloud

from functools import partial
# transformation dictionary
transformation_dict = {
    'gso': partial(rotate_point_cloud, rotations=[('x', 0)]), # no transformation
    'LGM': partial(rotate_point_cloud, rotations=[('x', 90)]),
    'CRM': partial(rotate_point_cloud, rotations=[('x', 90), ('z', 180)]),
    'Lara': partial(rotate_point_cloud, rotations=[('x', -110), ('z', 33)]),
    'ln3diff': partial(rotate_point_cloud, rotations=[('x', 90)]),
    'One-2-3-45': partial(rotate_point_cloud, rotations=[('x', 90), ('z', 180)]),
    'splatter-img': partial(rotate_point_cloud, rotations=[('x', -60)]),
    # 
    'OpenLRM': partial(rotate_point_cloud, rotations=[('x', 0)]),
    'shape-e': partial(rotate_point_cloud, rotations=[('x', 0)]),
    # un-aligned
    'ditl-fromditlPCD-fixPose-tomesh': partial(rotate_point_cloud, rotations=[('x', 0)]),
    'ditl-fromditlPCD-fixPose-tomesh-ditxlPCD': partial(rotate_point_cloud, rotations=[('x', 0)]),
}


class PFID_evaluator():
    def __init__(self, devices=['cuda:0'], batch_size=256, cache_dir='~/.temp/PFID_evaluator'):
        self.__dict__.update(locals())
        cache_dir = os.path.expanduser(cache_dir)
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        self.devices = [torch.device(d) for d in devices]
        self.clf = PointNetClassifier(devices=self.devices, cache_dir=cache_dir, device_batch_size=self.batch_size)

    def compute_pfid(self, pc_1, pc_2, return_feature=False):

        # print("computing first batch activations")
        # save clouds to npz files
        npz_path1 = os.path.join(self.cache_dir, "temp1.npz")
        npz_path2 = os.path.join(self.cache_dir, "temp2.npz")
        np.savez(npz_path1, arr_0=pc_1)
        np.savez(npz_path2, arr_0=pc_2)

        features_1, _ = self.clf.features_and_preds(NpzStreamer(npz_path1))
        stats_1 = compute_statistics(features_1)
        # print(features_1.max(), features_1.min(), features_1.mean(), features_1.std() )
        # print(stats_1.mu.shape, stats_1.sigma.shape)

        features_2, _ = self.clf.features_and_preds(NpzStreamer(npz_path2))
        stats_2 = compute_statistics(features_2)
        # print(features_2.max(), features_2.min(), features_2.mean(), features_2.std() )
        # print(stats_2.mu.shape, stats_2.sigma.shape)

        if return_feature:
            return features_1, features_2
        
        #PFID = stats_1.frechet_distance(stats_2) # same result as the next line
        PFID= frechet_distance(stats_1.mu, stats_1.sigma, stats_2.mu, stats_2.sigma)
        PKID = kernel_distance(features_1, features_2)

        print(f"P-FID: {PFID}", f"P-KID: {PKID}")
        return dict(PFID=PFID, PKID=PKID)


# from https://github.com/GaParmar/clean-fid/blob/main/cleanfid/fid.py
"""
Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
        d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Danica J. Sutherland.
Params:
    mu1   : Numpy array containing the activations of a layer of the
            inception net (like returned by the function 'get_predictions')
            for generated samples.
    mu2   : The sample mean over activations, precalculated on an
            representative data set.
    sigma1: The covariance matrix over activations for generated samples.
    sigma2: The covariance matrix over activations, precalculated on an
            representative data set.
"""
def frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)
    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)


"""
Compute the KID score given the sets of features
"""
def kernel_distance(feats1, feats2, num_subsets=100, max_subset_size=1000):
    n = feats1.shape[1]
    m = min(min(feats1.shape[0], feats2.shape[0]), max_subset_size)
    t = 0
    for _subset_idx in range(num_subsets):
        x = feats2[np.random.choice(feats2.shape[0], m, replace=False)]
        y = feats1[np.random.choice(feats1.shape[0], m, replace=False)]
        a = (x @ x.T / n + 1) ** 3 + (y @ y.T / n + 1) ** 3
        b = (x @ y.T / n + 1) ** 3
        t += (a.sum() - np.diag(a).sum()) / (m - 1) - b.sum() * 2 / m
    kid = t / num_subsets / m
    return float(kid)


# load and calculate fid, kid, is

def normalize_point_clouds(pc: np.ndarray) -> np.ndarray:
    # centroids = np.mean(pc, axis=1, keepdims=True)
    centroids = np.mean(pc, axis=1, keepdims=True)
    pc = pc - centroids
    m = np.max(np.sqrt(np.sum(pc**2, axis=-1, keepdims=True)), axis=1, keepdims=True)
    pc = pc / m
    return pc


class PCDPathDataset(torch.utils.data.Dataset):
    def __init__(self, pcd_file_path, transformation, rand_aug=False):
        files = sorted(glob.glob(f'{pcd_file_path}/*.ply') )
        # assert len(files)==1030 # gso
        self.files = files
        self.transformation = transformation 
        # self.transforms = transforms
        # self.reso=reso
        self.rand_aug = rand_aug
        # if rand_aug:
        # else:
        #     self.rand_transform = None

    def __len__(self):
        return len(self.files)

    def __getitem__(self, i):
        path = self.files[i]

        pcd = trimesh.load(path).vertices # pcu may fail sometimes
        pcd = normalize_point_clouds(pcd[None])[0]
        pcd = self.transformation(pcd)
        if self.rand_aug is not None:
            rand_rot = [('x', random.randint(0,359)), ('y', random.randint(0,359)), ('z', random.randint(0,359))]
            rand_transform = partial(rotate_point_cloud, rotations=rand_rot) # no transformation
            pcd = rand_transform(pcd) # since no canonical space

        # try:
        #     assert pcd.shape[1]==4096
        # except Exception as e:
        #     print(path)
        
        return pcd


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--cache_dir", type=str, default=None)
    parser.add_argument("batch_1", type=str)
    parser.add_argument("batch_2", type=str)
    args = parser.parse_args()

    print("creating classifier...")
    clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.cache_dir)

    worker=2
    # force_recompute = False
    force_recompute = True

    feat_1_path = os.path.join(args.batch_1, 'feat.npy')
    pred_1_path = os.path.join(args.batch_1, 'pred.npy')
    # if not force_recompute and all(os.path.exists(path) for path in [feat_1_path, pred_1_path]):
    # if all(os.path.exists(path) for path in [feat_1_path, pred_1_path]):
    if not force_recompute and all(os.path.exists(path) for path in [feat_1_path, pred_1_path]):
        print("loading activations", args.batch_1)
        features_1 = np.load(feat_1_path)
        preds_1 = np.load(pred_1_path)

    else:
        print("computing activations", args.batch_1)
        # gt_dataset = PCDPathDataset(args.batch_1,  transformation_dict['gso'])
        gt_dataset = PCDPathDataset(args.batch_1,  transformation_dict['gso'], rand_aug=True)

        # gt
        gt_loader = torch.utils.data.DataLoader(gt_dataset,
                                                    batch_size=64,
                                                    shuffle=False,
                                                    drop_last=False,
                                                    num_workers=worker)
        features_1, preds_1 = clf.features_and_preds(gt_loader)
        np.save(feat_1_path, features_1)
        np.save(pred_1_path, preds_1)

    feat_2_path = os.path.join(args.batch_2, 'feat.npy')
    pred_2_path = os.path.join(args.batch_2, 'pred.npy')

    if not force_recompute and all(os.path.exists(path) for path in [feat_2_path, pred_2_path]):
        features_2 = np.load(feat_2_path)
        preds_2 = np.load(pred_2_path)
        print("loading activations", args.batch_2)
    else:

        print("computing activations", args.batch_2)
        method_name = args.batch_2.split('/')[-1]
        # st()
        pcd_transformation = transformation_dict[method_name]

        pred_dataset = PCDPathDataset(args.batch_2, transformation=pcd_transformation, rand_aug=True)

        # worker=0
        pred_loader = torch.utils.data.DataLoader(pred_dataset,
                                                    batch_size=64,
                                                    shuffle=False,
                                                    drop_last=False,
                                                    num_workers=worker)
        features_2, preds_2 = clf.features_and_preds(pred_loader)
        np.save(feat_2_path, features_2)
        np.save(feat_2_path, preds_2)

    print("computing statistics")

    stats_1 = compute_statistics(features_1)
    # print(features_1.max(), features_1.min(), features_1.mean(), features_1.std() )
    # print(stats_1.mu.shape, stats_1.sigma.shape)

    stats_2 = compute_statistics(features_2)
    # print(features_2.max(), features_2.min(), features_2.mean(), features_2.std() )
    # print(stats_2.mu.shape, stats_2.sigma.shape)

    # if return_feature:
    #     return features_1, features_2
    
    #PFID = stats_1.frechet_distance(stats_2) # same result as the next line
    PFID= frechet_distance(stats_1.mu, stats_1.sigma, stats_2.mu, stats_2.sigma)
    PKID = kernel_distance(features_1, features_2)

    # _, preds = clf.features_and_preds(pred_loader)

    # print(f"P-IS: {compute_inception_score(preds)}")
    # print(f"P-IS: {compute_inception_score(preds)}")
    method_name = args.batch_2.split('/')[-1]

    # print(method_name, f"P-FID: {PFID}", f"P-KID: {PKID}", f"P-IS: {compute_inception_score(preds_2)}")
    print(method_name, f"P-FID: {PFID}", f"P-KID: {PKID}")
    # return dict(PFID=PFID, PKID=PKID)


if __name__ == "__main__":
    main()